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CFD

Computational Flmd Dynamics (CFD) 1s the branch of flmd dynamics providing a cost-effective
means of simulating real flows by the numencal solution of the goverming equations. The governing
equations for Newtoman fluid dynanucs, namely the Navier-Stokes equations, have been known for
over 150 years. However, the development of reduced forms of these equations 1s still an active area
of research, in particular, the turbulent closure problem of the Reynolds-averaged Navier-Stokes
equations. For non-Newtoman flmd dynamucs, chemucally reacting flows and two phase flows, the
theoretical development 1s at less advanced stage.

Experimental methods has played an important role in validating and explornng the limits of the
various approximations to the goverming equations, particularly wind tunnel and rig tests that provide
a cost-effective alternative to full-scale testing. The flow governing equations are extremely
complicated such that analytic solutions cannot be obtained for most practical applications.

Computational techmques replace the governing partial differential equations with systems of
algebraic equations that are much easier to solve using computers. The steady improvement in
computing power, since the 1950°s, thus has led to the emergence of CFD. This branch of fluud
dynamics complements experimental and theoretical flud dynamics by providing alternative
potentially cheaper means of testing fluid flow systems. It also can allow for the testing of conditions
which are not possible or extremely difficult to measure experimentally and are not amenable to
analytic solutions

PREDICTION METHODS.

Engineers are interested in predicting the behaviour of systems fo understand the relationship between
the system variables. This allows for better design of systems or understanding of their behaviour for
optinusing their operation. Typically, engineers used to perform experiments which either allows them
to understand the system directly, or construct mathematical models that represent their systems.

Another approach to understand the system 1s to construct a mathematical model based on the
understanding of the basic physical phenomena that govern its behaviour and then trying to solve these
models for a given set of condifions by finding a mathematical solution to the resulting system of
equations. Tlus 1s termed the analytical approach.

The third approach is the use of CFD methods mentioned above, where the differential equations
governing the system are converted to a set of algebraic equations at discrete points, and then solved
using digital computers. We will now shed some light on these three approaches highlighting their
advantages and limutations.



EXPERIMENTAL TECHNIQUES.

The most reliable information about physical phenomena 1s usually given by measurements. In certain
situations, an experimental mvestigation mvolving full-scale equipment can be used to predict how the
equipment would perform under given conditions. However, in most practical engineering applications,
such full scale tests are either difficult or very expensive to perform, or not possible at all.

A common alternative 1s to perform experiments on small scale models. The resulting information
however, needs to be extrapolated to the full scale and general rules for doing this are often
unavailable. The small scale models do not usually simulate all the features of the full scale system.
This sometimes limits the usefulness of the test results.

In many sifuations, there are serious difficulties in measurements and the measuring equupment can
have significant errors. For example, the performance of an arcraft engine at high altitude conditions
1s a difficult, expensive and sometimes a rnisky undertaking, and 15 usually done at the later stages of
the process where major changes to the design can result in sigmificant costs.

Although the above discussion implies that the need for reliable computational models 15 of paramount
importance, 1t 15 should be stressed that these numerical models require validation using reliable
experimental data before they can be put to good use. This indicates that experimental methods will
remain to play an important rule in engineering.

ANALYTICAL METHODS

Analytical models work out the consequences of a mathematical model which represents the
behaviour of a system. The mathematical model representing the physical process mainly consists of a
set of differential equations. If classical mathematics were used to solve these equations. we call the
approach as the analytical or theoretical approach.

In most practical engineering applications, various assumptions and simplifications need to be made to
enable the analytical solution of the differential equations representing the physical situation. Tlus at
one hand limits the applicability of these methods to simple type problems, or limuts the validity of the
solutions 1f too many assumptions and simplifications are made.

Despite that, analytical methods played significant role in the past and they still play an important role.
They have helped engineers and scientists in the understanding of the fundamental rules controlling
the behaviour of many engmeering systems. In addition, they are used to help understand and interpret
experimental results. Furthermore, they can be used as a first stage in the validation of CFD models.

CFD TECHNIQUES

CFD techmques have emerged with the advent of digital computers. Since then, a large number of
numerical methods were developed to solve flow problems using this approach. The basic approach 1s
outlined below.



The purpose of a flow sumulation 1s to find out how the flow behaves in a given system for a given set
of inlet and outlet conditions. These conditions are usually termed boundary conditions.

For example, 1n a boiler required fo raise the temperature of water for heating purposes, 1t may be
required to calculate, for a given mass inflow of water and energy input using the gas fire, what 1s the
temperature and velocity of the water coming out of the boiler. It might be also required to know the
flow pattern and temperature distribution within the boiler if design improvements need to be made to
improve nuxing or reduce energy loss through the walls.

Since the geometry m most boilers 1s complex, 1t 15 difficult to find an analytical solution to the flow
equations. For all engineering purposes, it will be useful to know the basic flow quanfities at a large
number of discrete points spread around the boiler geometry. This will give enough understanding of
the flow behaviour and will enable engineers to get the required information erther for operation or

design purposes.

The basic concept of CFD methods 1s then to find the values of the flow quantities at a large number
of pomts i the system. These points are usually connected together in what is called numerical grid or
mesh. The system of differential equations representing the flow 1s converted, using some procedure,
to a system of algebraic equations representing the interdependency of the flow at those points and
their neighbouring points.

If the flow 1s unsteady, either due to varying boundary conditions, or due to mherent unsteadiness. The
solution procedure 1s repeated at discrete time intervals to predict the evolution in time of the flow
variables at the grid pomts.

With the development of fast and validated numerical procures, and the continuous increase in
computer speed and availability of cheap memory, larger and larger problems are bemng solved using
CFD methods at cheaper cost and quicker turn around times. In many design and analysis applications,
CFD methods are quickly replacing experimental and analytical methods.

It should be noted that there are certamn levels of numerical approximations and assumptions made
during the development of CFD models. Hence, good understanding of the applicability range and the
linutation of a CFD tools 1s essential to enable the correct use of these tools.

In addition to the speed and reduced cost of CFD methods, compared to experimental procedures in
most engineering applications, they also offer a more complete set of information. They usually
provide all relevant flow mformation throughout the domam of interest. Experimental methods are
mostly lumted to measurements of some flow quantities at certain locations accessible by the
measuring equipment.

CFD simulations also enable flow solutions at the true scale of the engmneering systems with the actual
operating conditions, while experimental measurements mostly require either scaling up or down. In
most cases, realistic conditions cannot be economically represented and thus results need to be
extrapolated. This problem does not exit in CFD simulations.



TYPICAL PROBLEMS.
AEROSPACE APPLICATIONS.

CFD methods are now widely used in most aerospace applications for the purpose of predicting
component performance and as an integral part of the design cycle. The applications are numerous and
we will only list few examples here.

The first example 1s flow around an aircraft. Wind tunnel tests require substantial scaling which leads
to some difficulties of matching the important flow parameters. If we attempt to model the correct
Mach number, the Reynolds number will be substantially lower than the full scale Reynolds number
leading to errors in the modelled shear stress and other flow features. It 1s also very expensive to
replicate altitude conditions within a wind tunnel.

On the other hand, full scale flight tests are extremely expensive and are not without risk. For these
reasons, CFD provides a useful tool m predicting the performance of the airframe components under
various conditions and this leads to substantial cuts in the time and cost of the design process. An
example of a flow around a complete aircraft is shown in Figure §1.

Mach number

It may be seen that the speed of sound is the thermodynamic property that varies from point to
point. When there is a large relative speed between a body and the compressible fluid surrounds
it, then the compressibility of the fluid greatly influences the flow properties. Ratio of the local
speed (V) of the gas to the speed of sound (a) is called as local Mach number. M
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There are few physical meanings for Mach number;

(@) It shows the compressibility effect for a fluid i.e. M < 0.3 implies that fluid is incompressible.



(b) It is a measure of directed motion of a gas compared to the random thermal motion of the
molecules.

(c) It can be shown that Mach number is proportional to the ratio of kinetic to internal energy.
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Figure 1: Grid and flow solution for a civil aircraft with nacelles.
AUTOMOTIVE APPLICATIONS

In automotive applications CFD 1s nowadays used in a large number of areas including engine
components, auxiliary systems and also for modeling the aerodynamics of the car to munimise drag
and optimise the down force under various operating conditions. Figure gl shows two examples of
automotive applications. Figure ga shows the flow field around a fanuly car obtained using CFD
methods. Figure @b shows the flow in the induction duct for a formula student racing car. The
objectives of thus analysis are to understand the flow pattern within the induced during the process of
design optimisation to mininuse pressure losses and ensure uniformity of air ducted to the cylinders.



(@) Flow around a car.

(b) Formula student racing car induction duct.

Figure 2a, b: Examples of automotive applications.
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BASIC EQUATIONS OF FLUID FLOW AND LEVELS OF APPROXIMATIONS.

Fluid flow equations are made essenfially of differential equations representing the interrelationship
between the flow variables and their evolution m time and space. These equations are complemented
by algebraic relations such as the equation of state for compressible flow as we will see below.

To help the student understand the physical meaning of the terms n these equations, we will illustrate

the basic concepts using a simple differential equation before presenting the system of differential
equations representing the flow.

Let us take for example, the temperature distribution of a flow in straight a pipe, where the velocity 15
fixed by pumping a fixed volume flow rate into the pipe, Assume also that the flow velocity is not
altered by the change in temperature. The temperature distribution T (x. t) in the pipe as a function of
the pipe axial coordinate x 15 given by the following differential equation:
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where u 1s the flow velocity w111j-:h 1s assumed constant across the pipe, f 1s time and o 1s the thermal
diffusivity. In Equation &1, the first term 15 the fime denivative expressing the temperature gradient
with time. The second term 15 called the advection term whuch 1s responsible for the transport of any
temperature disturbance with the flow without any distortion.

The third term 1s called the diffusion term, which 1s responsible for the spread of any disturbance in all
directions. To illustrate these concepts, let us take these terms one by one. If the thermal diffusivity 15
assumed to be negligible, Equation § 1 reduces to:
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Figure 3: Convection of a disturbance in a pipe.

A temperature disturbance entering the pipe from the left (Figure j(a)) at time t = 0 will be convected
without any distortion after a while to the right as shown in Figure L(b). If the flow velocity is zero,
Equation Jj1 reduces to:
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A temperature disturbance shown n Figure u)(a) will be diffused to the right and left and reduced in
amplitude after a while as shown in Figure ul(b). The action of both convection and diffusion can
now be added together to represent the behaviour described by equation .1 as shown 1n Figure £33,
where a disturbance introduced at the left, will both be convected and diffused as shown in Figure

g(b)_
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Figure 4: Diffusion of a wave in a pipe.

The simplicity of this system enabled a straightforward interpretation of the various terms. Equation
B! 1s said to be hinear because the velocity 15 assumed constant and does not depend on temperature.
Hence there 1s only one dependent variable, which 1s the temperature.

A system which might include a nonlinear convective term is shown in the equation below:
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This equation represents the transport of momentum along the pipe. In this case, velocity 1s the
dependent vanable and it 15 not assumed to be constant. The nonlineanity arises in the convective term

where the velocity, which 1s the sought variable, 15 being convected by the action of the velocity itself.
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Figure 5: Convective and diffusion of a wave in a pipe.

THE NAVIER - STOKES EQUATIONS.

The Navier — Stokes and continuity equations provide the foundations for modeling fluid motion.

The laws of motion that apply to solids are valid for all matter mcluding liquuds and gases. A principal
difference, however, between fluids and solids 1s that flmds distort without linut. For example, 1f a
shear stress 15 applied to a flmd, then layers of fluid particles will move relative to each other and the
particles will not return to their original position if application of the shear force 1s stopped. Analysis
of a flmd needs to take account of such distortions.

A flwmd particle will respond to a force in the same way that a solid particle will. If a force 1s applied to
a particle, acceleration will result as governed by Newton's second law of motion, which states that
the rate of change of momentum of a body 1s proportional to the unbalanced force acting on 1t and
takes place 1n the direction of the force. It is useful to consider the forces that a flmd particle can
experience. These include:

body forces such as gravity and electromagnetism;
forces due to pressure;
forces due to viscous action:

forces due to rotation.

Assuming that the shear rate in a flmd 1s linearly related to shear stress, and that the fluid flow 1s
laminar, Navier (1823) derived the equations of motion for a viscous fluid from molecular
considerations. Stokes (1845) also derived the equations of motion for a viscous flmd 1n a shghtly
dafferent form and the basic equations that govern fluid flow are now generally known as the Navier-
Stokes equations of mofion. The Navier-Stokes equations can also be used for turbulent flow, with
appropriate modifications.

The Navier — Stokes equation can be derived by considering the dynamic equilibrium of a fluid
element.

They state that the inertial forces acting on a fluid element are balanced by the
sturface and body forces



We are not going to derive the Navier-Stokes and continuity equations here as this can be found in
most standard text books. However, we will state the equations here and briefly give the physical
mnterpretation of the terms as this will help us understand the numerical schemes used to solve those
equations. It will also allow us to mntroduce the various levels of approximations used to simplify the
equations to reduce the numerical solution costs.

COMPRESSIBLE FLOW.

The flow governing equations are the continuity equation, momentum equation (Navier —
Stokes) and energy equation:
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THE ENERGY EQUATION.
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Where @ is the dissipation function given by:
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In these equations, u,v,w are the velocity components in the X, y, z directions, p is the density, T

is the temperature, p is the pressure, p is the viscosity and c, is the specific heat at constant
pressure.

The continuity equation applies to all fluids, compressible and incompressible flow, Newtoman and
non-Newtonian flds. It expresses the law of conservation of mass at each pomt m a flid and must
therefore be satisfied at every point in a flow field.



It 1s worthwhile to offer brief comment on the physical significance of Equations (2.6-2.8). The terms
on the left side are often referred to as inertial terms, and arise from the momentum changes. These are

countered by the pressure gradient, 6p/éx . viscous forces which always act to retard the flow, and if

present, body forces.

The 1nertial term gives a measure of the change of velocity of one fluid element as 1t moves about in
space. The term &/&t gives the variation of velocity at a fixed point and is known as the local
derivative. The remaining three terms of the inertial term are grouped together and known as the
convective terms or convective differential.

Assuming constant properties of viscosity and specific heat, the above system of equations contains 6
unknowns. With only five equations available, a further equation 1s needed to close the system.
Usually, this 1s provided by a constitutive relation for the pressure. For example, for an ideal gas, the
relation between temperature and pressure 1s given by: p = pRT | where R 1s the gas constant.

INCOMPRESSIBLE FLOW.

The above system of equation can be simplified if the density 1s constant. If the temperature 1s also 15
assumed constant, the system reduces to (for simplicity, body forces are also neglected, but they can
be retained if needed):
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For mcompressible flows with temperature variation, the energy equation need to be solved to obtamn
the temperature variation, but its effect on the continmty and momentum equations are neglected.

BASIC COMPUTATIONAL TECHNIQUES

In this Chapter, basic computational techmques will be introduced. We will start first by describing
how the typical terms 1n a flmd flow differential equation, namely first and second derivatives are
converted to approximate discrete expressions which can be used in the construction of numerncal
schemes. We will briefly talk about fime discretisation, leaving more details about this later on as
further concepts are developed.



A general description of the most common discretisation techniques for fluid flow will then be given,
namely the Finite Difference Method, The Finite Element Method and The Finite Volume Method.

o DISCRETISATION
Converting Derivatives to Discrete Expressions.

The process of obtaining a numerical solution to a differential equation can be viewed in the same way
as conducting a lab experiment. In a lab experiment, the physical quantity, flow velocity for example,
1s measured at discrete points in the domain of interest using a measurement device. A picture of the
flow variation then can be constructed by connecting the measurement points allowing us to visualise
the flow.

If we requure the flow quantities between the measurement points, some interpolation technique can be
used which may be linear or a higher order interpolation. This will depend on how far the points from
each other, or how accurate we require these intermediate quantities.

In the same manner, numerical techniques convert the continuous differential equation to that of
finding the solution at discrete points in space which we call grid points. A full picture of the flow then
can be constructed from the solution at those points.

o SPATIAL DISCRETISATION.

Let us assume that we want to represent a variation of a function @ , such as the one shown in Figure
B using a polynonual in x of degree n _The function then can be expressed as:

0(x) = ag+ a;x+ ax?+ vt ax™ 14

We need then to employ a numerical method to find the coefficientsay. a, ...... a, . Once these

coefficients are determined, we are able to evaluate the function & at any given value of x .



X
Figure 6: One dimensional function with x — coordinate.

However, this procedure 1s inconvenient as every tfime we need the value of the function at a point, we
need to substitute into the polynomual. The values of the coefficients themselves have no physical
meaning and 1f 15 not easy to judge their validity by mspection.

A rather more convenient way 1s to employ the value of the dependent variable & at the discrete
pomts as the unknown which need to be deternuned numerically. The numerical methods to do that
mclude providing a set of algebraic equations of these unknowns and finding an algonthm fo solve
those equations. This leads us to the concept of discretisation of the differential equation.

By focussing our attention on the values of the dependent vanable at a set of grid points, we can
replace the continuous information contained in the differential equation with discrete values. We thus
can say that we have discretised the distribution of & 1n the domain of interest.

The algebraic equations that mvolve the unknown values of the function & at the grid points are
derived from the governing differential equation by transferring the spatial derivatives to their discrete
approximations as we shall see below.

We can thus view the discretised equations as algebraic relations connecting the approximations of the
values of the dependent variable at the gnd points. Since these algebraic equations are derived from
the differential equation, they express the same physical information as that differential equation.

DISCRETISATION METHODS.

We turn our attention now to the process of deriving the discretization equations. The discretized
form of a differential equation can be derived in many ways. We shall concentrate in this lecture
on the most common methods used. These methods are explained in the following three
subsections.

=  The Finite Difference Method.



The sumplest procedure used to derive the discrete from of a differential equation, which we call here
the Fite Dafference equations consists of approximating the derivatives in the differential equation
using a truncated Taylor series.

The Finite Difference Method 1s the simplest method to apply. particularly on uniform grids. However
1t requires high degree of mesh regularity. The mesh needs to be set up mn a structured way where
mesh points sould fo be located at the intersection points of families of rectilinear curves.

Let us consider a one dimensional situation where the independent variable & 1s a function of the
space coordmate x as shown in Figure @J We will discretise the spatial domain vsing equal space
mntervals of Ax and concentrate on three neighbouring points in the domain shown by the enlarged
part of the domain mn Figure 31_ The three points are numbered arbitrarily as shown-in the figure.

For grid point 2 m the nuddle between pomts 1 and 3, the Taylor series expansion gives the value of
the field variable at point 1 as a function of the field variable and its derivatives at point 2 as follows:
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Figure 7: Finite Difference discretization.

Sinularly, the expansion gives the field variable at pomnt 3 as:
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dx dx’ n dx

By truncating the series in equation 15 after the 2" term and rearranging, we obtain this
expression for the first derivative at point 2:
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This is called the first order backward difference approximation of the first derivative.

Similarly, a first order forward difference can be obtained from equation 16. By subtracting
equation 16 from equation 15, a second order central difference approximation for the first

derivative is obtained:
(20) e
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By adding equations 16 and 17, we obtain an expression for the second derivative at point 2:
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If we substitute the expressions for the approximate derivatives into a differential equation, we obtamn

what is called the finite difference equation m Note that this leads to the
transformation of the differential equation to an algebraic equation at point 2. Sinular expressions can

be obtained for all the points in the domain leading to a set of discrete algebraic equations.

Boundary conditions are applied by setting the known values at the end points. The system of
algebraic equations can then be solved for the unknown quantities at the grid pomnts.

THE FINITE ELEMENT METHOD.

The Finite Element Method 1s based on the so called “Method of Weighted Residuals’. This1s a
powerful method for solving partial differential equations which was developed between 1940 and
1960, mainly for structural dynamics problems. This was extended later fo the field of flud flow.

This method has a distinet advantage over the Finite Difference method mn the fact that it allows
naturally for handling complex arbitrary geometries as 1t can be easily applied usmg wrregular gnids of
various shapes. It also provides a set of functions that give the variation of the differential equations

between grid points, whereas Fimte Difference method provides information for the values at grid
points only.

Assume that the difterential equation at hand 1s of the general convection ditfusion form as given in

Equation §1. Taking the steady state version of this equation, o focus on the spatial discretisation, the
equation becomes:

oT 2T

[.la—X— aﬁ=0 ............... 20

For simplicity of presentation, this equation will be expressed in symbolic form as:
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Note that equation 20 is given here for illustration purposes and the principle can be applied for
any other differential equation.

If we assume that we are seeking an approximate solution 7" using a trial function of some form.
Then substituting this into the differential equation will not satisfy the equation. Thus a residual
appears on the right hand side instead of zero. That 1s:

QT =R e, 21

Because Q(T") is an approximation, residual R does not vanish in most of the domain. The

“Weighted Residual Method” 15 based on the concept of introducing a weighting function # and then
requiring that the integral of the weighted residual vamishes over the whole solution domain. That 1s:

fy WQTNAQL=0 ..ccoovvenn 22

For the sake of arpument, if we assume that the trial function 1s a polynomual with a number of
unknown coefficients, then by selecting a succession of tnal functions and infegrating, a number of
equations can be created which can be solved simultaneously to obtain the coefficients of the
polynomuial thus resulting in the solution.

This implies that the finite element method can be used to obtain analytic solutions to differential
equations provided suitable trial and weighting functions can be found.

Now we furn our attention on how to use this method to solve differential equations numerically. The
first step 15 to assume local trial functions over the discretised domain. The solution domain 1s
subdivided into non-overlapping cells, called elements. For example, in one dimension, these can be
line segments between grid points. The tnal functions are then mterpolation functions which assume
the shape of the variation of the variable between the grid points comprising the cell. The simplest of
which are the linear shape functions that assume that the field variable has a linear vanation between
grid points. We then can express the solution as:

T,(X) = Tl'Nl'(X) ................ 23
where N is the interpolation function at nodei and T, 1s the sought solution at that node. By

choosing a series of weighting functions that have the value of " at node 7 and zero elsewhere for
each node 1 the domain in turn, we can get an expression of the discrete weighted residual form by

substituting into equation 22.

Substituting in equation, we obtain:

[, WQ(T:N;(x))dQ2=0 ............ 24



Integrating at all the domain cells produces a system of algebraic equations of the form

K-Tl-=r .................... 25

Which can be solved for the coefficients T; representing the field function at the nodal points.
The matrix K is called the Jacobean or Mass matrix and the right hand side usually contains
boundary conditions and source terms if there is any.

There are several possible choices for the approximation function and the weighting function. The
most widely used choice 1s that weighting function 1s the same as the approximation function. This
method 1s called the Galerkin Method.

THE FINITE VOLUME METHOD.

This method was developed in the early 1970°s. It can be viewed as a special case of the Weighted
Residual Method described in the previous Section, where the weightmg function takes the form:

wh=1 26

For this, a number of weighted residual equations are generated by dividing the solution domain mto
sub-domains called ‘control volumes’ and setting the weighting function to be unity over the control
volumes one at a time, and zero elsewhere. This implies that the residual over each volume must
become zero.

Another way of deriving a finite volume discretisation 1s by starting from the integral form of the flow

equations. Recall uﬂmt we expressed the flow equations in their differential form An
alternative way of expressing the flow equations 1s the so called integral form.

For example, the continuity equation (Equation §,5) can be expressed for a control volume £2with a
surface boundary I as:
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where U = i + V + W _ This essentially states that the rate of accumulation of matter within domain
€2 equals to the rate of the flux through its boundaries.

Simularly, integral formulations can be obtained for the momentum equations. For example, the
mtegral form of the x-momentum equation takes the form:
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where 7 1s the viscous flux given by:
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Similar mntegral forms can be written for the y and z momentum equations.

The fimite volume formulation can start from this mtegral form. The fact that the vanation of any

quantity within a volume depends entirely on the surface values of the fluxes presents the basis of the
Finite Volume formulation

The Finite Volume formulation starts by subdividing the solution domain into small volumes. We can
then write the integral form of the conservation laws for each volume separately. The global
conservation can be recovered by adding up the fluxes of the sub-volumes.

Let’s take for example the volume in Figure % which 15 divided to 4 sub-volumes

Figure 8: Finite Volume Subdivisions.

The flux through the internal subdivisions cancels out. For example the flux gomg through boundary

BD of volume 3 1s equal in magnitude and opposite in sign to the flux going through boundary DB of
volume 4.

By working out the fluxes through all the boundaries on each sub-volume in terms of the field vanable
either at the volume centre pont or at the vertices, a system of algebraic equations 1s constructed

which can be solved for the unknown field variables.
EXAMPLE 1



We will use here the solution of a simple equation to illustrate the use of the Finite Difference Method
to solve a differential equation in one dimension. The problem at hand 1s that of heat transfer in a
cylindrical fin given in Figure q, where both the base and the tip have fixed temperatures.

Figure 9: Heat transfer from a circular fin.

If we define the non-dimensional temperature as:

gL Is
I -T,
and the axial coordinate as:
. X
o L

Additionally, the characteristic convection conduction parameter 1s defined as:

3=h_PL3

Y T

where h is the convective heat transfer coefficient of the fluid around the fin, k is the conductivity of
the fin material and P and A are the perimeter and cross sectional area of the fin respectively. It can
be shown that the differential equation governing the temperature distribution along the fin 15 given




We are required to obtain a solution for this equation for the following conditions:

Y2 =3
Opase = 1
Oip =0
Let us discretise the one dimensional domain using 5 cells of equal spacing resulting 1n 6 gnid ponts
as shown 1n Figure 4£)
1 2 3 4 3 6

@ & ® ® ® ®
’._D.Z _.(
Figure 10: Grid used for the fin problem.

Boundary conditions are given for points 1 and 6 as above. So for mternal pomts. using equation 16
for the second derivative, a discrete form for each point can be written as follows:

O — 26 ;‘ i1 _ 33’. =0
(0.2)

Rearranging:

250, — 536, +256,, =0

Thus if we use the boundary conditions for the end nodes and equation 3{ for the mner nodes, we
obtain the following set of algebraic equations for the discrete system:

0, =1

250, — 536, + 250,

250, — 5305 + 250,

2505 — 530, + 2505 eeeeeeeeee, 32
250, — 5305 + 256,

0, =0

This 1s a system of six equations containing six unknowns, which can be easily solved for the
unknown temperatures. The solution for this systems and comparison with analytical solution will be
left for the student as an exercise.



Assignment.
Discuss the three basic properties of Numerical schemes:

a. Consistency.
b. Stability
c. Convergence

THE FINITE DIFFERENCE METHOD.

During the lecture we presented a brief overview of the most popular methods used for the
discretization of differential equations. The finite difference method was introduced and it was
mentioned it is the simplest one conceptually. However, this method is difficult to apply when
we are encountered with complex geometries. For this reason, this method is of limited use for
practical applications and only a very small number of engineering codes rely on this method.

However, the simplicity of the method allows us to explore the properties of various numerical
discretisations and compare their degree of accuracy. It also allows us to have a better grasp of
numerical procedures. Additionally. for solution procedures which require higher order derivatives or
high order of accuracy, this method can be better suited than other methods despite the linitation of
mesh regularity.

THE FINITE DIFFERENCE METHOD BASICS.

During the lecture we have used the Taylor’s series expansion to transform the terms in a
differential equation to their discrete counterpart at grid points. We will start with this to build an
understanding of the accuracy of the various formulations.

\
-1 I I+1

B J T‘i&xq

Figure 1: Finite difference stencil.

Let’s start with the Finite Difference stencil shown in Figure $1. A Taylor’s series expansion

around point 7 in terms point i—1 gives:



Rearranging equation 1 gives:

. B 12 ig
(dﬁ?] _6, -6, +l d_? _l(m)l d—? F o
dx i Ax 2 dx” i 3 dx i

If we truncate the right hand side after the first term, we obtain the expression:

{ﬁ] _ Hi' _H:'—l
dx /. Ax

The expression in Equation @3 15 called the backward difference and 1t 1s first order accurate. The
order of accuracy i1s related to the power of Ax in the first truncated term of the Taylor’s series, which
1s one 1n this case.

Simularly, a first order accurate forward difference can be obtained by a Taylor’s series expansion 1n
terms of point 7 +1 as follows:

dey 1 de) 1 de
HJ‘+1 == 5} + M{E}I +?(M)1[F]r +—(ﬂx)3[—]i + ...

_ o . (3
[E} _Gn =0 +lm{ﬂT ?] +l(ﬁx]‘[d—f] T
dx ), Ax 2 dx” ). 3 dx” ).

dﬂ] _ 61— 6,
dx |, Ax

If we add Equations (82 and @4 and divide both sides by 2 gives:

. _ 3
[dﬁ] =Hi+l Hi—l +ﬁ+§(ﬂx)2(d—?] +......

dx 2Ax dx

Truncating equation §7 after the first term gives:

(dﬂ.] _ O =0,y
dx ), 2Ax 3




Equation @8 is a central difference scheme of 2nd order accuracy because the first truncated term 1s in
the order of [ﬂu]: . That 15 the power of Ax for the first truncated term is two. A geometrical
mterpretation of the three difference schemes 1s shown in Figure f|2. It can be seen that the central

difference approximation provides a better representation of the slope of the curve at the point of
interest whach 1s the first derivative.

Fomyard
Barlaard 9 difference
9 difference i )
- ) __H-\-\-""‘--._\_
L i{i}n]
i
\
i Central
i differenca
|
|
|
|
i
i
i+1 X

Figure 2: Geometric interpretation of difference formulae.
Example 2.

In this example, we will revisit the fin example presented earlier. The objective is to show how
the finite difference gradient boundary condition can be applied. Let’s solve the equation:

2L —v9=0

C5 9

: ... 08 : 2 -
with the boundary condition — = 0at x = L thatisat £ =1 This 1s a more realistic boundary

condition than prescribed temperature. It indicates that the heat flux at the tip of the fin 1s zero,
indicating that temperature gradient 1s zero.

SOLUTION.

Let’s use the same discretization of 6 grid points earlier introduced, and use the central
difference scheme for all internal nodes (node 2 — 5) as before giving the discrete equation of

1 2 3 4 3 6

L @ L ® T‘_U _3 4?




256, —536, +256,, =0

At point 1, the temperature 15 specified by the base temperature and thus we do not need to elaborate
further as we have:

G, = l.
However, for point 6, there 1s a problem if we attempt to use the central difference scheme as there 15
no grid point to the right of point 6. Remember that we need to apply the gradient boundary condition

at this point. We could be tempted to use a backward difference formula (Equation §§3). At the first
mnstance, this might seem a good 1dea. Let’s examine that.

oe

Applying Equation 3 to point 6 and imposing the condition of = gives:

[

el

6, — 6
0.2

=0

This leads to the equation &, = 6;

This can be used with the other set of equations to solve the problem, however, an error 1s found near
that point which propagates to the rest of the domam. This error results from the fact that the discretisation
at point 6 1s first order accurate which 1s not consistent with the second order accurate scheme for the
internal nodes. Figure 3 shows the solution compared to the analytic solution for this case.
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& Analytic
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Figure 3: Solution with first order discretization of boundary conditions.

overcome this problem, the boundary conditions equation needs to be discretised with the
same order of accuracy as the internal points. To enable this, we add an imaginary point after
nodes 6. lets say node 7, and we work out the value of the field variable at this node in terms
of the values at nodes 5 and 6. This then allows us to formulate a central difference equation.
Thus, with reference to Figure 84:

1 2 3 4 5 8 7
oo o o ¢ o

Figure 5: Applying gradient boundary condition at point 6.

The central difference formula at point 6 15 then:
256, — 536, + 256, =0

which can be solved for &;to give:

536, — 256,
ST — 6 3

25 10

The second order gradient boundary condition for point 6 1s then:

6 _6,-6; _

Substituting from @10 into B11:

536, =256, _,
25 ’
0.4

which can be rearranged to give:
536, —508; =0

Which 15 clearly different from that obtained using the first order backward formula above. Usmng this
equation together with the other equations for the rest of the nodes leads to the solution shown n
Figure §5 which 1s in a much better agreement with the analytic solution.
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Figure 5: Solutions with second order discretization of boundary conditions.

OTHER DIFFERENCE FORMULAE

We have seen that difference formulae for the first derivative can be formulated using one or two
adjacent points. However, finite difference formulae for the first denivative can be formulated using
any number of adjacent points with the order of approximation increasing with the number of points.

In a particular numerical scheme, a balance need to be found between the order of accuracy and the
number of gnd points involved mn the computation. This will dictate the computational memory and
effort both need to be kept to a numimum for a given overall solution accuracy.

It 1s usually difficult to devise miles that govern the optimum combination of discretisation accuracy
and number of grid points as these vary from problem to problem and only experience with a large
number of cases can produce guidance in this respect.

Let’s now exanune the process of finding formulae mvolving more gnid ponts for a given accuracy.
Consider the stencil shown in Figure §6.

—@ ® .’q—ﬁi;

Figure 6: Stencil for second order backward difference formula.




If we are required to formulate a second order backward difference formula, we use the following

procedure:
dx Ax T 12
where O 1n the last term on the right ha
expansions to create a system of equatu
1a 2 3
0. = Hi—ﬁ_rtd—ﬂ] +l(ﬂx]1 —d ? —l(ﬂx)g d—? ...
dx J, 2 dx” ) 3 dx” ). 13
de de) 1 d’e
6., =6, —Zﬂx{—] +2axf| =5 | == 2Ax)| == | +eeee
dx J; dx” ). 3 dx” ). 14

Multiplying Equation #13 by b and Equation 814 by c and adding a &, we get:

ad +b6_ +cl_, =

m+b+®ﬂ+aﬂth{jg}+fopm+5{f?]—Oh&ﬂﬂ

. 15

i

Comparing this to Equation §12, we find that only the coefficients of the term containing the first
derivative will not vanish. This gives the following three Equations:

a+b+ec=0
—(2c+b)=1
de+b=10

Solving simultaneously gives:

]
I

I

o
I
I

[
T
I

b | —

Thus the second order difference fornmla becomes:

d6 136,26, +0.56,,
dx Ax




The above procedure with undetermined coefficients can by systematically used to obtain finite
difference formulae for all derivatives at any required degree of accuracy. As an exercise for the
student, try to denive a second order forward formula using a three point stencil to give the following:

dé -1.56,+26,,—056,,
dx Ax

MULTI - DIMENSIONAL FINITE DIFFERENCE FORMULAE

One of the advantages of the fimite difference method 1s 1ts straight forward extension to multi-
dimensions. The way that partial derivatives of a function of several variables can be discretised using
the same methods of the previous sections for each variable and for each coordinate direction.

To 1llustrate this lets consider the thermal conduction problem m two dimensions, which 15 also know
as Laplace’s equations.

o’r o'
—5t- 3 =0
ox- oy

Our objective 1s to discretise this equation for a two dimensional domain. Let’s first consider internal
nodes. Figure 87 shows part of the two dimensional finite difference grid with a stencil centred on

powntm. n . The index m 1s meremented in the x-direction, while the index # 1s incremented i the y
direction

A
_ji mn+1

N m+1.n

m=1,n
S ¢ &

m.n-1

"_Ax#

Figure 7: Two dimensional Finite Difference Stencil.



If we apply the second order difference formula of equation 19 (shown below) from the previous
lecture for both x and y direction separately, we obtain the following discrete form for node m, n:

[(Fe] _6,-26, +6,
dx? ), (Ax)’

Tpu, 2T, + Towa— 21, +T, .1

+l.n m.n m—1n m

(Ax)’ (Ay) 19

If we assume that the gnid spacing 1s equal in both x and y directions, that 1s Ax = Ay, then Equation
@19 reduces to:

T,

m+lm Tm + Tm.n—l +T, — 47, =0

m -1 T 20

—1n

A similar equation can be obtained for each internal grid node. For boundary nodes, the discretisation
will depend on the type of boundary conditions applied. If a given temperature boundary conditions 1s
to be applies, then the equation for that node 15 deleted and replaced by the given value for the
temperature.

If a flux boundary condition is to be applied, then a procedure similar to that explained above
under “OTHER DIFFERENCE FORMULAE” is applied. In this case a fictious node is added
and the value of the temperature at that node is computed as a function of the internal nodes. The
same central difference scheme then can be used at boundary nodes. The resulting discretization
leads to a number of equations, which equals the number of unknown temperatures. These
equations can then be solved simultaneously for the unknown nodal temperatures.

The case described here illustrates the simphicity of extension of the fimte difference method to two
dimensions. Extension to three-dimensions 1s equally simple and follows the same logic.

THE FINITE ELEMENT METHOD.

The Finite Element Method was briefly introduced earlier. We also outlined the history of the
method and its advantages. We also outlined the theoretical background and the framework by
which the Galerkin weighted residual method is used to discretize differential equations. In this
lecture, we will present the method in more detail.

The concept of the Fimite Element Method can be traced back to the technique used 1 stress
calculations whereby a structure was divided into small sub-structures of various shapes called
‘elements’. The structure is then re-assembled after each element has been analysed.

The technique was developed further in what is now known as the Finite Element Method
between 1940 and 1960, mainly in the field of structural dynamics. The technique was then
expanded to solve field problems in the 1960°s (Zeinkiewicz, 1977).



Nowadays, the Finite Element Method has been put in an engineering rigorous framework with
precise mathematical conditions for existence, convergence and error bounds. In this lecture, we

will not concentrate on the mathematical derivation of the method, but rather on its application
for the discretization of differential equations.

THE FINITE ELEMENT METHOD BASICS.

As discussed earlier in the lecture, a numerical model for fluid flow starts with a physical model
of the problem. We could choose a model of the full Navier — Stokes equations or any of the

approximation levels. We then require solving the mathematical model over a given physical
domain with some boundary conditions.

The first step 1s to discretise the spatial domain into non-overlapping elements or sub-regions. The
Finite Element Method allows a variety of element shapes, for example, triangles, quadrilaterals in
two dimensions and tetrahedral, hexahedral, pentahedral, and prisms in three dimensions. Each
element 1s formed by the connection of a certain number of nodes, with the number of nodes 1n an
element depending on the type of the element (Figure §1).

Figure 1:Typical two dimensional Finite Element Mesh.

The number of nodes in each element does not depend only on the number of corner points in the
element, but also on the type of the element interpolation function as we will explain later.

Once a mesh 1s generated, we choose the type of interpolation function that represents the variation of
the field variable over the element. A clear distinction can be seen here from the Finite Difference
Method. In the Fimite Difference Method, we were only mnterested m the values of the field variable at
erid nodes, and no information was required for the behaviour between the nodes. We may have
implicitly assumed that it 1s linear, but we did not have to do that.

The next stage 1s to determine the matrix equations that express the properties of the individual
element by forming a left hand side matrix and a load vector. A typical left hand side matrix and a
load vector for a one dimensional element may look like:



where 4 contains some geometric and/or physical parameters of the element.

The next stage 1s to assemble the element equations to obtain a system of simultaneous equations that
can be solved for the unknown field variables at the mesh nodes. The final system of equations will be
represented in matrix notation as:

KI(v}- {7} 3

The vector {/} is the vector of the unknown field variables at the nodes.

In the next section, we will illustrate those steps using a simple example. But before we do that, we
will present more information about the element shape functions and the Finite Element discretisation
process of differential equations.

ELEMENTS AND SHAPE FUNCTIONS.

The Finite Element Method mnvolves both the discretisation of the computational domain and the
discretisation of the differential equations. In this process, the variables are represented in a piece-wise
manner over the domain. By dividing the solution domain into elements, and approximating the
solution over these elements using a suitable known function, a relationship between the elements and
the differential equation 1s established.

The functions used to represent the variation of the solution within each element are called shape
functions, or mterpolation functions or basis functions. Typically, polynomial functions are used
because they can be easily integrated or differentiated. The accuracy of the results can be improved by
mcreasing the order of the polynomial used.

1. One - dimensional elements.

These are the simplest elements and their discussion will help illustrate the basic principles. The
simplest element has a piece — wise linear interpolation function and contains two nodes. Let’s
consider the function shown in Figure 2. If the x-coordinate is discretised to a set of elements
each containing two nodal points, and the function is approximated using linear variation
between each nodes, then the variation for a typical element is shown in figure 3.



Figure 2: Linear piece-wise representation
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Figure 3: Linear variation over one element.
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The linear variation over the element of Figure §3 can be represented using the summation of two
shape functions N, and N atnodes 7and jrespectively. Each shape function wall have a maximum

of unity and the corresponding point and varies linearly to zero at the other point as shown in Figure @4.

The shape functions can be expressed mathematically as:

X.— X
N, =14
S e TR 4
X—X
N, = i
X.—X
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Figure 4: Linear shape functions in one dimension.

The field function 1s then represented over the element using the shape function as:
g, =N +N,0,
This is essentially the same as the linear variation in Figure 3. We can use the expression in
equation 6 to get the first derivative of the field variable within the element. That is:

dg  dN. dN .

Noting that x; — x;1s the length of the element. Let’s give this length the symbol/ .

Then equation 8 can be written in the following compact matrix notation:

de g,
R l[—1 1]

dx 1 G,

We can observe from this also that the first derrvative of the field variable 1s constant over the
element. This indicates that the first derivative of the function over the domain will be stepwise
constant over the entire domain mdicating that it 1s not a continuous function.

Higher order shape functions can be obtained by using more nodes withmn the element. For example a
quadratic shape function can be obtained by using three nodes in the element as shown in Figure 5.
Using a quadratic polynomial, the shape functions can be derived to give (with the length of the
element [ = x, —x, )
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Figure 5: Quadratic element and shape functions.

And the field variable 1s represented over the element by:

§,=N,6,+N,8,+N,6,

]

TWO — DIMENSIONAL TRIANGULAR ELEMENTS.

The most popular element for arbitrary two dimensional geometries is the triangular element.
This is mainly because triangular meshes are relatively easier to generate and to control their
quality. In this lecture we will discuss the shape functions for these elements. A two dimensional
linear element is shown in Figure 6. We can represent the variation of the field function on this
element using a linear polynomial as follows:

O (x.y)=a+bx+cy



If the field functions at the three grid point are labelled &,. &, and 8, then the three coefficients

a.b and ccan be determined as follows:

8, =a+bx, + ey,

............... 15
&, =a+bx, +cy, 16
8, = a + bx; + ¢y, 17
1‘
| (XysWy)
(x5, ¥3)
(¥5.93)
z

Figure 6: Two dimensional linear triangular element.

Equations 15 — 17 can be solved simultaneously to get the shape function coefficients in terms of
the nodal coordinates to give:

[(123:3 —X3)» ]31 + (13}’1 - xl.}J})HE + (-lez -0 )93]

1
a=—
24

b= i[(}:g — 308, +(v; = )6, +(», - J"g)‘ga]

c=$[(13 —xg)ﬂl +(Il _13]&2 +(Iz —11)6?3]

where A 1s the area of the triangle given by:

1
A==[(ny; —xnp1)+ oy —xys)+ (oys —x,)] y



Substituting the values of the three coefficients from equations 18 — 20 into equations 15 — 17
and gathering coefficients we obtain the following expression for equation 14:

@ (x.y)=N,6, + N,8, + N,0,
where the shape functions are given by:

1
N, = ﬁ [{Iz.}'s — X3} ) + (}’1 - }’3)?‘5 + (-T3-— X, )J"]

1
N, = a[(-rﬁ.}'l —x1ps)+ (}’3 —y)x+ [xl —X; ]}]

1

N, = ﬂ[{ﬂ."z —x )+ (0 =+ (g —x )1]

Equation 22 can be written using the following matrix notation:
6,

6.(x.y)=[N, N, N }6,
g

The shape functions have some properties that are worth noticing. The first 1s that 1if we evaluate the

shape function at ifs corresponding node, for example 1f we evaluate NV, at node 1, we obtain

2A4/2A4=1 and if we evaluate N, at nodes 2 or 3, we get zero. Additionally, at any point in the
triangle:

N1+N2 +N3=1

The gradient of the field variable over the element can be calculated as follows:

5N N 5N
99 _0Np ,Thyg g
cx cx o ox
0 _oNi, Ny, oN,,
dy oy Ay

which can be written as follows after getting the derivatives of the shape functions:
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It should be noted, as in the linear one dimensional element, that the first derivative of the field
function 15 constant within the triangular two dimensional element.

WEIGHTED RESIDUAL METHOD.

It was explained in the lecture that there are several methods to derive a Finite Element
formulation for differential equations. It was also mentioned that the method of weighted
residuals, particularly the Galerkin method is the most popular one.

We are not interested in the theoretical derivation of this method. Our mnterest here 1s mainly on how
to apply this method to transform a given differential equation into its equivalent discrete form over a
Finite Element grid. We will illustrate thus by way of an example for a one-dimensional problem that

we address earlier in the class; that is the fin problem.

The choice of this example serves at least two purposes. The first 1s the illustration of the Finite
Element discretisation using the Galerkin method. The second, if we use the same regular grid that
was used for the Finite Difference Discretisation, we can compare the two discretisations.

We want to discretise the equation:

g

g

2
——wG=0
ad v

.................. 30 (53)

Using the 5 element grid shown in figure 12 with the boundary conditions:
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Figure 12: Finite element grid for equation 30

We can start the discretisation using the shape functions of the linear one-dimensional element of
Equations @5 and &6. However to follow a more general procedure that can be used in two and three-

dimensional 1soprametric elements, we will express the one-dimensional shape functions using
1soparametric one-dimensional element.

If we pick any of the elements in figure 13 and map it to a local coordinate system as shown in
figure 14, the origin is defined at the mid-point of the element, then substituting x; = —1 and
x; = 1inequations 5 and 6, we get the following shape functions:

l >
¢ =-1 “=( : =1 ‘:
Figure 13: Isoparametric one-dimensional linear element.
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Thus the approximate field function expressed over the element 1s given by:

]

6,=N,6,+N.6,

N. dN .
dﬂszdvfai_ JJ&.=—lﬂi+lﬁ}.
¢ d; ' Tac ot

The next stage is to use the Galerkin formulation earlier, by which we substitute the
approximation of the field variable from equation 33 into the differential equation, multiply this



by a weighting function which is of the same form as the field shape function and require that the
integral of this weighted residual to equal zero over the solution domain. Hence:

) Yoy
AR,
U™ @

The subscript k indicates the nodes in the domain. This means that by using the shape functions
at all nodes one at a time, we obtain a set of equations which equals the number of nodes. Since
the first derivative of the linear shape function (Equation 33) is constant, then the second
derivative is zero. To be able to represent the second derivative, we need to obtain the so called
weak formulation, by which the first term of equation 35 is integrated by parts. So for the first
node of the above element:

If"“[d 6, ]d(_{w :_ﬂ _J~;..dN,. 49 4
. 0

0

where 7 is the outward normal to the boundary which equals 1, with appropriate sign. The ecndl result
when the equations are assembled together 1s that this term cancels out for all mternal nodes and will
be either 1 or -1 at the boundary nodes.

Substituting into equation 35, and replacing the field function and its derivative by their
approximate representations from equations 33 and 34, we get:

all, Lr. lr. I d.n!?llllr
|N dﬁ' d“—nNd—& _|., dﬂ':d“u:gi dN., Lo |dr
ffr:, tds . v ldg dd di d& J

-

0

["v*(NN6+ NN 8,)de .

Substituting the values of the shape function and its derivative in terms of £ and integrating, we

obtain an equation for node 7 which can be written in the following matrix notation; with the outward
normal at node 11s 1.

r 3 -1 [de
1 6| v, % -
- _1]{%J+ ;L 1Hﬂ}+ “

i 0

If we weight the equation with NV, and repeat the integration, we obtain the following equation for the

second node of element 1, where the outward normal here 1s -1 because 1t 1s in the opposite direction:



AR 6] | 0
1] ’lﬁf—ﬁ?ﬂ[z if TLal dE
Ce 6] 6 0

oy di

We can now assemble the contributions of nodes 1 and 2 of the first element 1n one matrix
represenfing the element to give:

11 -1][6] . [2 1][e dc
cl-1 1]le;] 6 |1 2|6 |_de
The same matrix can be assembled for all remaining elements. Note that the only metric in the

matrix is the element length Ce- No assumption was made so far that this should be equal for all
elements. Thus, this formulation is general for arbitrary distribution of grid nodes. Once we have
chosen the grid, we can substitute the length of each element in equation 40 and obtain the
specific matrix for the particular element. Those matrices can then be assembled in the global
system matrix as we will see next. But first, let’s take the specific case of figure 12 where the

domain was divided into equal elements of length 2 and using y- =3

obtain the following matrix for each element:

as stated earlier, we

- A

-49 52 ||8, de
ds

The contributions from all elements can be assembled by placing the matrix for each element in
the global matrix. This means that for internal nodes where the node is shared between two
elements, the contributions need to be overlapped, or in other words added together. The process
is explained schematically in Figure 14 for a system containing three elements with their
contributions which are labelled a, b and c. Each colour represents a column of the assembled
matrix. Note that the two middle columns and rows each containing contributions from two
neighbouring elements.
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Figure 14: Schematic of system matrix assembly.

Following the same procedure, the system matrix can be assembled for the six nodes from the
contribution matrices of equation 41 to give the following system matrix:

_ . de )
52 —-49 00 00 00 0.0 (g Tar
~49 104 -49 0.0 00 00 |6, 0.0
0.0 -49 104 -49 00 00 ||6| | 00
00 00 -49 104 -49 00 (|6,[ | 00
00 00 00 -49 104 -49]6; 0.0
00 00 00 00 -49 52 |6 :’f
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Multiplying across and using the boundary conditions &, =1and &, = 0 we obtain the

following system of linear equations:

6 =1
-4.96, +1046, -4.96, =0
—-4.96, +10.46,-4.96, =0
-4.96, +10.46, -4.96. =0
—4.98, +10.46, -4.96, =0
G, =0
Comparing the systems of Equations in Equation 32 under the finite volume method section and
Equation 43 in this section, we notice that they are essentially the same set of equations. This can

be assured multiplying all terms on the left and right of Equation 43 by (-5.1); we obtain
Equation 32. This means that the solution for this system is the same as Equation 32. This leads



to the verification of equations 43 as the solution for equations 32 was equivalent to the analytic
solution. It also leads us to the conclusion that the discretization using linear one-dimensional

elements 1s equivalent to the second order accurate central difference scheme of the Fimte Difference
formulation if we used equal grid spacmg. However, the important point 15 that the Finite Element
scheme can be used 1 a straight forward manner using uregular grids. In additions, the meorporation
of lhugher order schemes by using higher order elements 1s straightforward.

You might think that the derivation of the Finite Element formulation 1s cumbersome compared to the
Fiute Dafference formulation, and at the end, we obtained the same results as the sumple finite
difference scheme. That 1s correct. However, the advantages of the Finite Element formulations
become more apparent in two and three dumensional problems when arbitrary geometries are handled.

THE FINITE VOLUME METHOD.

The finite volume method was introduced earlier in the lecture. It was mentioned that it can be
viewed as a special case of the weighted residual method, where the function is 1. We also
presented an alternative way of obtaining a finite volume discretization using the integral form of
the differential equation.

The solution domain needs to be divided mto non-overlapping cells surrounded by boundary edges n
two-dimensions or boundary faces i three-dimensions. Integrating by parts leads the volume mtegral
to equal a flux through the volume boundary. Working out these fluxes in terms of the unknown field
variables at grid points erther at the cell corners or centres leads to a system of algebraic equations
which can be solved for the unknown field variables.

In the lecture, we will explain the principles of the finite difference method through worked
examples that start by one-dimensional simple models. We will build these up gradually to more
complex models and multiple dimensions. We will also compare the discretization resulting from
the Finite Volume formulation to that of the Finite Difference and Finite Element formulations to
the fin problem.

1. THE DIFFUSION EQUATION.

To 1illustrate the basic concepts of the Finite Volume discretisation for flud flow problems. Let’s
consider the diffusion equation. This equation 15 known as the Stokes equation, which contains the
pressure and viscous terms in the Navier-Stokes equations. In one-dimensional steady state
formulation, it takes the form:

df,d) B



where F 1s the body force. To sumplify matters further, we will ignore the pressure term for the
moment. Once this 1s done, the equation resembles the heat conduction equation which also includes a
source term. To be more physically meaningful in this analysis, let’s consider the heat conduction
equation instead which takes the form:

d [ dT

k—}+5=ﬂ
dx

dx

Here, I 15 the thermal conductivity, S 1s the source or internal heat generation per umit volume and
T 1s the temperature.

To derive a Finite Volume discretisation, we will use a three point stencil as shown in Figure 1. We
are seeking to derive the discretisation for the middle point P. We have also used the conventional
Finite Volume notation for the surrounding point of E and ¥ for east and west.

The next stage is to integrate Equation 2 over the cell (volume) which is highlighted in Figure 1,

this gives:
’-— Ax, A, 4—‘
> e
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Figure 1: Finite Volume stencil for the 1D conduction equation.

Giving:

[.&:d—T] —(kd—T} +[sdx=0
dx J dx J,,

To enable the calculation of the temperature gradient at the east and west boundaries of the cell, we
need to make an assumption of the temperature profiles within the grid. A reasonable assumption
would be that the temperature 1s varymg linearly between grnid points as shown in Figure @§2. This
allows a straight forward evaluation of the first two terms of Equation §4.
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Figure 2: Piecewise linear profile.

For the source term, we will assume that the average value § prevails over the control volume. Thus:

ks(TE _T.F') _ ku(TP _Tﬂ"}
m.

+SAx =0
= ﬂl'"_ 5

Example.

Applying the discretization used in equation 5 for equation 9 under the finite difference method
basics:

and equal grid spacing of 0.2.
Solution.
The discretization applied to equation 9 gives:

(EE _3}3‘) _ LSP_HT}—S&P.&}[:G
Ax Ax

] w

For equal grid spacing, Ax = Ax_ = Ax_ = 0.2, thus dividing by Ax and rearranging gives:

~36,=0




Equation 6 is the same as Equation 31(The finite volume method). Thus the finite volume
discretization in Equation 6 is equivalent to the 2" order Finite Difference discretization on the
same stencil. We also found in the lecture, for the same example, that this is also equivalent to
the Finite Element discretization over the same grid size.

In general, in the Finite Volume discretisation, it 1s not necessary that the distances Ax_and Ax  be

equal. In fact, the use of non-uniform grid spacing 1s often desirable as it enables the effective use of
computing power. In general, an accurate solution will be obtaimned when the grid 1s sufficiently fine.
However, there 1s no need to use fine grids in regions where the field variable changes slowly with the
space coordinate. On the other hand, fine prids are required when the variation 1s steep.

Similar equations can be formulated for all internal cells as discussed above. For boundary points, the
last cell 15 not complete as shown n Figure §3a. Boundary conditions need to be apphied. This 1s done
depending on the type of boundary conditions.
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Figure 3a: Application of boundary conditions.

If the value of the field variable is given, then there is no need to formulate a flux calculation there as
the equation for that cell will be replaced by the given temperature for the end node. For a given
gradient of the flow field, a treatment similar to that performed with the Finite Difference methods was
done earlier.

The approach proposed here, which ensures second order accuracy of the boundary conditions
discretisation 1s to extend the domain by an additional virtual node which completes the cell as shown
in Figure M3b. The value of the field variable at the virtual node is computed in terms of the two

neighbouring internal nodes using the inner cell scheme.






