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TYPICAL PROBLEMS. 

AEROSPACE APPLICATIONS. 

 

 

 

 

Mach number  

It may be seen that the speed of sound is the thermodynamic property that varies from point to 

point. When there is a large relative speed between a body and the compressible fluid surrounds 

it, then the compressibility of the fluid greatly influences the flow properties. Ratio of the local 

speed ( ) of the gas to the speed of sound (a) is called as local Mach number. M 
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There are few physical meanings for Mach number;  

(a) It shows the compressibility effect for a fluid i.e. M < 0.3 implies that fluid is incompressible.  



(b) It is a measure of directed motion of a gas compared to the random thermal motion of the 

molecules. 

(c) It can be shown that Mach number is proportional to the ratio of kinetic to internal energy. 

 

 

Figure 1: Grid and flow solution for a civil aircraft with nacelles. 

AUTOMOTIVE APPLICATIONS 

 



 

                                                (a)  Flow around a car. 

                                             

                                       (b) Formula student racing car induction duct. 

Figure 2a, b: Examples of automotive applications. 

 

 

 



BASIC EQUATIONS OF FLUID FLOW AND LEVELS OF APPROXIMATIONS. 
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Figure 3: Convection of a disturbance in a pipe. 
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Figure 4: Diffusion of a wave in a pipe. 

 

A system which might include a nonlinear convective term is shown in the equation below: 
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Figure 5: Convective and diffusion of a wave in a pipe. 

 

 

 

 

THE NAVIER - STOKES EQUATIONS. 

The Navier – Stokes and continuity equations provide the foundations for modeling fluid motion. 

 

 

 

 

The Navier – Stokes equation can be derived by considering the dynamic equilibrium of a fluid 

element. 

 



 

COMPRESSIBLE FLOW. 

The flow governing equations are the continuity equation, momentum equation (Navier – 

Stokes) and energy equation: 
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THE NAVIER – STOKES EQUATION. 
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THE ENERGY EQUATION. 
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Where   is the dissipation function given by: 
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In these equations, u,v,w are the velocity components in the x, y, z directions, ρ is the density, T 

is the temperature, p is the pressure, μ is the viscosity and cp is the specific heat at constant 

pressure. 

 



 

 

 

INCOMPRESSIBLE FLOW. 
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BASIC COMPUTATIONAL TECHNIQUES 

 



 

 

 

 

 

 

o DISCRETISATION 

Converting Derivatives to Discrete Expressions. 

 

 

 

o SPATIAL DISCRETISATION. 
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Figure 6: One dimensional function with x – coordinate. 

 

 

 

 

 

DISCRETISATION METHODS. 

We turn our attention now to the process of deriving the discretization equations. The discretized 

form of a differential equation can be derived in many ways. We shall concentrate in this lecture 

on the most common methods used. These methods are explained in the following three 

subsections. 

 The Finite Difference Method. 
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                                       Figure 7: Finite Difference discretization. 
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By truncating the series in equation 15 after the 2
nd

 term and rearranging, we obtain this 

expression for the first derivative at point 2: 



                                                             ……………….   17 

This is called the first order backward difference approximation of the first derivative. 

Similarly, a first order forward difference can be obtained from equation 16. By subtracting 

equation 16 from equation 15, a second order central difference approximation for the first 

derivative is obtained: 
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By adding equations 16 and 17, we obtain an expression for the second derivative at point 2: 
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THE FINITE ELEMENT METHOD. 
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For simplicity of presentation, this equation will be expressed in symbolic form as: 
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Note that equation 20 is given here for illustration purposes and the principle can be applied for 

any other differential equation. 
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substituting into equation 22. 

Substituting in equation, we obtain: 

                                    ∫    (    ( ))    
 

    …………..  24 



Integrating at all the domain cells produces a system of algebraic equations of the form 

                                            ………………..   25 

Which can be solved for the coefficients     representing the field function at the nodal points. 

The matrix K is called the Jacobean or Mass matrix and the right hand side usually contains 

boundary conditions and source terms if there is any. 

 

THE FINITE VOLUME METHOD. 
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                                           Figure 8: Finite Volume Subdivisions. 

 

 

 

EXAMPLE 1 



 

                                                

Figure 9: Heat transfer from a circular fin. 
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                                           Figure 10: Grid used for the fin problem. 

 

 

 

Rearranging: 
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Assignment. 

Discuss the three basic properties of Numerical schemes: 

a. Consistency. 

b. Stability 

c. Convergence 

 

THE FINITE DIFFERENCE METHOD. 

During the lecture we presented a brief overview of the most popular methods used for the 

discretization of differential equations. The finite difference method was introduced and it was 

mentioned it is the simplest one conceptually. However, this method is difficult to apply when 

we are encountered with complex geometries. For this reason, this method is of limited use for 

practical applications and only a very small number of engineering codes rely on this method. 

 

 

THE FINITE DIFFERENCE METHOD BASICS. 

During the lecture we have used the Taylor’s series expansion to transform the terms in a 

differential equation to their discrete counterpart at grid points. We will start with this to build an 

understanding of the accuracy of the various formulations. 

                                                      

                                            Figure 1: Finite difference stencil. 
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Rearranging equation 1 gives: 
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If we truncate the right hand side after the first term, we obtain the expression: 
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Figure 2: Geometric interpretation of difference formulae. 

Example 2. 

In this example, we will revisit the fin example presented earlier. The objective is to show how 

the finite difference gradient boundary condition can be applied. Let’s solve the equation: 

    …………………..  9 

 

SOLUTION. 

Let’s use the same discretization of 6 grid points earlier introduced, and use the central 

difference scheme for all internal nodes (node 2 – 5) as before giving the discrete equation of 

                                       



 

 

 

 

 

 

 

 

                



                  Figure 3: Solution with first order discretization of boundary conditions. 

 

                             

Figure 5: Applying gradient boundary condition at point 6. 
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                   Figure 5: Solutions with second order discretization of boundary conditions. 

OTHER DIFFERENCE FORMULAE 

 

 

 

 

                                             

Figure 6: Stencil for second order backward difference formula. 
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MULTI – DIMENSIONAL FINITE DIFFERENCE FORMULAE 
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                                   Figure 7: Two dimensional Finite Difference Stencil. 



If we apply the second order difference formula of equation 19 (shown below) from the previous 

lecture for both x and y direction separately, we obtain the following discrete form for node m, n: 
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If a flux boundary condition is to be applied, then a procedure similar to that explained above 

under  “OTHER DIFFERENCE FORMULAE” is applied. In this case a fictious node is added 

and the value of the temperature at that node is computed as a function of the internal nodes. The 

same central difference scheme then can be used at boundary nodes. The resulting discretization 

leads to a number of equations, which equals the number of unknown temperatures. These 

equations can then be solved simultaneously for the unknown nodal temperatures. 

 

THE FINITE ELEMENT METHOD. 

The Finite Element Method was briefly introduced earlier. We also outlined the history of the 

method and its advantages. We also outlined the theoretical background and the framework by 

which the Galerkin weighted residual method is used to discretize differential equations. In this 

lecture, we will present the method in more detail. 

 

The technique was developed further in what is now known as the Finite Element Method 

between 1940 and 1960, mainly in the field of structural dynamics. The technique was then 

expanded to solve field problems in the 1960’s (Zeinkiewicz, 1977). 



Nowadays, the Finite Element Method has been put in an engineering rigorous framework with 

precise mathematical conditions for existence, convergence and error bounds. In this lecture, we 

will not concentrate on the mathematical derivation of the method, but rather on its application 

for the discretization of differential equations. 

THE FINITE ELEMENT METHOD BASICS. 

As discussed earlier in the lecture, a numerical model for fluid flow starts with a physical model 

of the problem. We could choose a model of the full Navier – Stokes equations or any of the 

approximation levels. We then require solving the mathematical model over a given physical 

domain with some boundary conditions. 

 

                                          

                      Figure 1:Typical two dimensional Finite Element Mesh. 

The number of nodes in each element does not depend only on the number of corner points in the 

element, but also on the type of the element interpolation function as we will explain later. 
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ELEMENTS AND SHAPE FUNCTIONS. 

 

 

1. One - dimensional elements. 

These are the simplest elements and their discussion will help illustrate the basic principles. The 

simplest element has a piece – wise linear interpolation function and contains two nodes. Let’s 

consider the function shown in Figure 2. If the x-coordinate is discretised to a set of elements 

each containing two nodal points, and the function is approximated using linear variation 

between each nodes, then the variation for a typical element is shown in figure 3. 



                             

                                       Figure 2: Linear piece-wise representation 

                                      

                                    Figure 3: Linear variation over one element. 
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                      Figure 4: Linear shape functions in one dimension. 
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This is essentially the same as the linear variation in Figure 3. We can use the expression in 

equation 6 to get the first derivative of the field variable within the element. That is: 
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Then equation 8 can be written in the following compact matrix notation: 
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                              Figure 5: Quadratic element and shape functions. 
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TWO – DIMENSIONAL TRIANGULAR ELEMENTS. 

The most popular element for arbitrary two dimensional geometries is the triangular element. 

This is mainly because triangular meshes are relatively easier to generate and to control their 

quality. In this lecture we will discuss the shape functions for these elements. A two dimensional 

linear element is shown in Figure 6. We can represent the variation of the field function on this 

element using a linear polynomial as follows: 
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                                      Figure 6: Two dimensional linear triangular element. 

Equations 15 – 17 can be solved simultaneously to get the shape function coefficients in terms of 

the nodal coordinates to give: 
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Substituting the values of the three coefficients from equations 18 – 20 into equations 15 – 17 

and gathering coefficients we obtain the following expression for equation 14: 
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Equation 22 can be written using the following matrix notation: 
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Equation 28 can be written using the following compact matrix notation: 
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WEIGHTED RESIDUAL METHOD. 

It was explained in the lecture that there are several methods to derive a Finite Element 

formulation for differential equations. It was also mentioned that the method of weighted 

residuals, particularly the Galerkin method is the most popular one. 

 

 

we address earlier in the class; that is the fin problem. 
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Using the 5 element grid shown in figure 12 with the boundary conditions: 

 

 



 

 

Figure 12: Finite element grid for equation 30 

 

 

If we pick any of the elements in figure 13 and map it to a local coordinate system as shown in 

figure 14, the origin is defined at the mid-point of the element, then substituting         and 

      in equations 5 and 6, we get the following shape functions: 

 

Figure 13: Isoparametric one-dimensional linear element. 
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The next stage is to use the Galerkin formulation earlier, by which we substitute the 

approximation of the field variable from equation 33 into the differential equation, multiply this 



by a weighting function which is of the same form as the field shape function and require that the 

integral of this weighted residual to equal zero over the solution domain. Hence: 

     …………………………  35 

The subscript k indicates the nodes in the domain. This means that by using the shape functions 

at all nodes one at a time, we obtain a set of equations which equals the number of nodes. Since 

the first derivative of the linear shape function (Equation 33) is constant, then the second 

derivative is zero. To be able to represent the second derivative, we need to obtain the so called 

weak formulation, by which the first term of equation 35 is integrated by parts. So for the first 

node of the above element: 

     ………………….    36 

 

Substituting into equation 35, and replacing the field function and its derivative by their 

approximate representations from equations 33 and 34, we get: 
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The same matrix can be assembled for all remaining elements. Note that the only metric in the 

matrix is the element length  No assumption was made so far that this should be equal for all 

elements. Thus, this formulation is general for arbitrary distribution of grid nodes. Once we have 

chosen the grid, we can substitute the length of each element in equation 40 and obtain the 

specific matrix for the particular element. Those matrices can then be assembled in the global 

system matrix as we will see next. But first, let’s take the specific case of figure 12 where the 

domain was divided into equal elements of length 2 and using  as stated earlier, we 

obtain the following matrix for each element: 

    …………………   41 

The contributions from all elements can be assembled by placing the matrix for each element in 

the global matrix. This means that for internal nodes where the node is shared between two 

elements, the contributions need to be overlapped, or in other words added together. The process 

is explained schematically in Figure 14 for a system containing three elements with their 

contributions which are labelled a, b and c. Each colour represents a column of the assembled 

matrix. Note that the two middle columns and rows each containing contributions from two 

neighbouring elements. 



                             

                              Figure 14: Schematic of system matrix assembly. 

Following the same procedure, the system matrix can be assembled for the six nodes from the 

contribution matrices of equation 41 to give the following system matrix: 

    …..  42 

 

          ………………….   43 

Comparing the systems of Equations in Equation 32 under the finite volume method section and 

Equation 43 in this section, we notice that they are essentially the same set of equations. This can 

be assured multiplying all terms on the left and right of Equation 43 by (-5.1); we obtain 

Equation 32. This means that the solution for this system is the same as Equation 32. This leads 



to the verification of equations 43 as the solution for equations 32 was equivalent to the analytic 

solution. It also leads us to the conclusion that the discretization using linear one-dimensional 

 

 

 

THE FINITE VOLUME METHOD. 

The finite volume method was introduced earlier in the lecture. It was mentioned that it can be 

viewed as a special case of the weighted residual method, where the function is 1. We also 

presented an alternative way of obtaining a finite volume discretization using the integral form of 

the differential equation. 

 

In the lecture, we will explain the principles of the finite difference method through worked 

examples that start by one-dimensional simple models. We will build these up gradually to more 

complex models and multiple dimensions. We will also compare the discretization resulting from 

the Finite Volume formulation to that of the Finite Difference and Finite Element formulations to 

the fin problem. 

1. THE DIFFUSION EQUATION. 
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The next stage is to integrate Equation 2 over the cell (volume) which is highlighted in Figure 1, 

this gives: 

                                

                            Figure 1: Finite Volume stencil for the 1D conduction equation. 
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Giving: 

   ………………  4 

 



                             

                                          Figure 2: Piecewise linear profile. 
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Example. 

Applying the discretization used in equation 5 for equation 9 under the finite difference method 

basics: 

 

and equal grid spacing of 0.2. 

Solution. 

The discretization applied to equation 9 gives: 
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Equation 6 is the same as Equation 31(The finite volume method). Thus the finite volume 

discretization in Equation 6 is equivalent to the 2
nd

 order Finite Difference discretization on the 

same stencil. We also found in the lecture, for the same example, that this is also equivalent to 

the Finite Element discretization over the same grid size. 

 

 

 

                                                                        

                            (a)                                                                      (b) 

                            Figure 3a: Application of boundary conditions. 

If the value of the field variable is given, then there is no need to formulate a flux calculation there as 

the equation for that cell will be replaced by the given temperature for the end node. For a given 

gradient of the flow field, a treatment similar to that performed with the Finite Difference methods was 

done earlier. 

 

 

neighbouring internal nodes using the inner cell scheme. 

 

 

 



 

 

 

 

 

  

 

 

 


