
Magnetohydrodynamic Energy Conversion 

Magnetohydrodynamic energy conversion, popularly known as MHD, is another form of direct 
energy conversion in which electricity is produced from fossil fuels without first producing 
mechanical energy. The process involves the use of a powerful magnetic field to create an 
electric field normal to flow of an electrically conducting fluid through a channel as depicted in 
Figure 2. The flow velocity is parallel to the channel axis, taken in the y-direction. The drift of 
electrons induced by this lateral electric field produces an electric current density vector J. 
Electrodes in opposite side walls of the MHD flow channel provide an interface to an external 
load, to the MHD channel flow to the electrode on the opposite wall, and then back to the fluid, 
completing a circuit. Thus the MHD channel flow is a direct current source that can be applied 
directly to an external load or can be linked with a power-conditioning inverter to produce 
alternating current. 

MHD effects can be produced with electrons in metallic liquids such as mercury and sodium or 

in hot gases containing ions and free electrons. In both cases, the electrons are highly mobile 

and move readily among the atoms and ions while local net charge neutrality is maintained. 

That is, while electrons may move with ease, any small volume of the fluid contains the same 

total positive charges on the ions and negative electron charges, because any imbalance would 

produce large electrostatic forces to restore the balance. 

Ionized Gases in Electromagnetic Fields  

Before analyzing the MHD channel, we will consider briefly the behaviour of electrons 

in an ionized gas in the presence of electromagnetic fields.  

In a gas at or near equilibrium, atoms, ions, and elections are in random motion. At any 

given spatial position their velocities are distributed about a mean velocity that increase with 

increase in the local temperature. Consider just one of the free electrons moving, without 

collision, in a plane normal to a uniform magnetic field, as in Figure 1 below. The electron 

experiences a constant force qccB normal to its path. Here, q is the charge of the electron and cc 

the magnitude of its velocity. Because the force is normal to its path, the electron travels with 

constant velocity on a circular path around magnetic lines of force. By Newton’s Second Law, 

the force on the electron is  

   1/
2

NBqcrcmF eee   

It follows that the angular frequency of the electron about a line of force cc/r, called its 

cyclotron frequency, is  
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Fig. 1 

The electron cyclotron frequency is independent of electron velocity and is dependent 

only on the magnetic field strength and electron properties. Although the cyclotron motions of 

electrons exist in gases when strong magnetic fields are present, the circular paths of the 

electrons may be disrupted by collisions with other parties.  

The likelihood of collisions between particles depends on their effective sizes: larger 

particles will collide more frequently. The probability of collision is taken as proportional to 

the collision cross-section Q of the particle, which may be thought of as its area. The frequency 

of collision of electron c is given by the product of the electron number density, ne 

(electrons/m3), the collision cross-section, Q [m2], and the velocity, ce [m/s]: 
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Here, the mean time between Collins, �[s], is the inverse of the collision frequency. 

The ratio of the cyclotron frequency to the collision frequency c / , is called the Hall 

parameter. It indicates the relative importance of the magnetic field and collisions in 

controlling electron motion in the ionized n gas. The Hall parameter is related to the magnetic 

field intensity by 
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It is proportional to the number of cyclotron loops made collision. A Hall parameter 

large compared with one indicates magnetic-field-dominated motion of electrons, while a small 

value implies that collisions quickly break up ordered motions produced by the magnetic field.  



At least three velocities are of importance in a conducting gas in a MHD channel. First, 

the velocity of the gas stream is given by u (assumed constant for the present case for an 

appropriately designed channel). Secondly, the velocities of individual electrons ce, as just 

introduced, are distributed about an average value that increases with the local temperature. In 

the absence of electromagnetic fields, the average value of cc over all electrons is the flow 

velocity u; i.e., on the average the electrons move with the gas flow. When fields are present, 

however, there may be an average motion of electrons relative to the gas. The third velocity, 

the relative velocity of an electron wc, is defined as the vector difference of its absolute 

velocity and the mean fluid velocity:  
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The drift velocity we, is the magnitude of the average of the relative velocities of the 

electrons. In the absence of fields, the average of ce is u, and thus the drift velocity is zero. 

When an electric field is present, however, the transport of negative charge by electrons 

represents a current flow in the gas.  

Another important parameter, the electron mobility, is a measure of the response of 

electrons to an electric field. It is defined as the ratio of the magnitude of the electron drift 

velocity we to the local electric field intensity.  

 sVmEwc  // 2
                                                                                  (6)

 

If it is assumed that an electron loses all of its drift velocity on collision, the 

acceleration of the electron may be approximated by the ratio of the drift velocity to the mean 

time between collisions. Because the force due to the electric field is given by qE, Newton’s 

School Law allows the drift velocity to be expressed as  
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The electron mobility can then be written as  
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Using equation (4), the product B becomes the Hall parameter: 
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Thus the Hall parameter is large for gases of high electron mobility in strong magnetic 

fields. It will be seen that this can have a significant effect on MHD channel design.  



Assuming electrons as the dominant charge carriers, the current density can also be 

related to the electron mobility through the drift velocity: 
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The electron conductivity of a stationary gas is then given by   : 

  1
/


 mqnEJ c

                                                                         (11)
 

Thus high electron mobility and electron number density are essential to achieve the high 

conductivity needed in an MHD generator. 

Analysis of a Segmented Electrode MHD Generator 

Consider the one dimensional flow of a gas in an MHD channel coupled with a simple three-

dimensional model of the electromagnetic phenomena. Rather than the continuous electrode 

configuration , we examine a refined configuration, shown in Figure 2 . we examine a 

configuration, shown in Figure 3. Here the electrodes, set in opposite electrically insulated 

channel walls, are segmented in the stream wise direction. This eliminates a return path along 

the wall for axial electrical currents in the flow.  

             

      Fig. 2 



By the same notation as in Figure 2, a seeded, ionized gas flows through the segmented-

electrode channel in the y-direction with a constant velocity u. A uniform magnetic field in the z-

direction exists throughout the gas in the channel. A force given by quxB, and thus an 

equivalent electric field uxB is imposed on the flow in the channel. Therefore, positive ions tend 

to drift in the positive x-direction and electrons drift in the negative x-direction toward the 

right electrodes. Because their mobility is much greater than that of the relatively massive ions, 

the electrons are the primary charge carriers. The electrons are collected at the right electrodes 

and flow through the external circuits returning to the channel at the left electrodes, as shown in 

Figure 3. 

When the channel is under an electrical load, the current density vector in the .t-direction 

induces a force on the fluid in the negatives-direction. Thus the x-component of J interacts with 

the magnetic field to produce the axial electric field component Ey=   - JB that opposes the flow 

velocity u. In order to maintain a constant velocity in the duct, a streamwise pressure gradient, 

dp/dy, must balance the force due to this axial electric field  

                 

       Fig. 3 

and the viscous forces. Thus, ignoring viscous resistance, the axial force on the gas per unit 

volume is 
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where the negative sign indicates that the magnetic force is directed upstream. As a  result 

dp/dy < 0, indicating that the flow pressure drops as y increases. The resulting net pressure 

force in the positives-direction balances the magnetic and viscous forces and maintains the 



flow velocity constant. A compressor is therefore required upstream of the channel to 

pressurize the flow, to support the field-induced streamwise pressure gradient, and thus to 

maintain the steady flow in the channel. 

With segmented electrodes there is no axial current in the channel (Jy = 0), and thus the 

current density component Jx=J is proportional to the net electric field in they direction; 
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The combined electrical resistance of the MHD channel flow and the external load governs the 

available potential at the MHD electrodes. If the external circuit is open, J= 0; hence, Equation  

(14) indicates that uBE openx  . With a finite external resistance, current flows and the electrode 

potential is reduced below the open-circuit value. Thus, under load, the channel voltage drops to 

a fraction K of the open-circuit voltage. Hence, we may write Ex = KuB, where K is called the 

channel load factor and where 0   K   1. The current density then becomes 

   2/1 mAKuBJ                                                 (14) 

The electrical power delivered to the load per unit volume of channel is then given by 
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Returning now to consideration of the stream wise electrical fluid interaction, we write 

the steady-flow form of the First Law for an adiabatic control volume, including the work 

done against the body force, as 
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where m is the channel mass flow rate. Work is positive here because it is done by the fluid in 

the channel to produce the electrical current flow to the external load. For constant velocity in 

the channel, this becomes 
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where   is the gas density. Thus the work delivered to the load reduces the thermal energy 

of the flow. We have seen that a compressor is required to pressurize the flow in the channel 

and that heating of the flow provides a high entrance enthalpy and work output. 



From Equations (12) and (14), the electrical retarding force on the flow is 
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and the fluid power to push the gas through the channel per unit volume is 
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                   (19)

 

The Ohmic or I2R loss is given, using Equation (14), by 
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Comparing equations (15) and (19) with equation (20), we see that the ohmic loss is the 

difference between the power required to push the flow through the channel and the useful 

power through the load. 

The efficiency of the channel is defined as the ratio of the outPower to inPower . By 

Equations (15) and (19), the MHD channel efficiency is 

KPowerPower inout  /
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Thus the electrical efficiency of the segmented electrode MHD channel is equal to the 

channel load factor. Examination of Equation (15) shows that the power output vanishes 

when K = 0 and when K=1. Thus there must be an intermediate value of K that maximizes 

the power output. By differentiation of Equation (15) with respect to K, the usual methods 

of calculus indicate that the power is maximized when K = 0.5. Thus operation at this value 

implies that 50% of the flow energy input to the channel is converted to electricity, and the 

remainder is dissipated in the flow channel. This energy is not lost from the flow but is an 

irreversibility that is reflected in a loss in ability of the flow to do work. 

EXAMPLE I 1.6 

A 10 m3 MHD generator with segmented electrodes has a short-circuit current density of 

12,000 amperes per square meter. The gas conductivity is 20 (Ohm-m)-1. If flow and 

magnetic field conditions are unchanged when the load factor is 0.6, what is the output 

power? What is the actual current density in the channel? If the magnetic field is doubled in 

strength, by what factor would you expect the output power to change? 

Solution 



For a short-circuit condition, the load factor is zero, and Equation (14) yields 

2/12000 mAuBJ sc    

Then  

mVJuB sc /60020/12000/    

The power output is then given by Equation (15): 

        MWWVKKBuPower 28.17000,280,17104.06.0600201
222    

The channel current density is then given by 

     2/48004.0600201 mAKuBJ    

If the magnetic field strength is doubled. Equation (15) shows that the power output is 

increased by a factor of four, assuming there is no change in the flow or load conditions. 

  



 


