
BOUNDARY LAYER CONCEPT IN THE STUDY OF FLUID FLOW 

When fluids flow over surfaces, the molecules near the surface are brought to rest 
due to the viscosity of the fluid. The adjacent layers are also slow down, but to a lower 
and lower extent. This slowing down is found limited to a thin layer near the surface. The 
fluid beyond this layer is not affected by the presence of the surface. The fluid layer near 
the surface in which there is a general slowing down is defined as boundary layer. The 
velocity of flow in this layer increases from zero at the surface to free stream velocity at 
the edge of the boundary layer. 

When a real fluid flow past a solid body or a solid wall, the fluid particles adhere 
to the boundary and condition of no slip occurs. This means that the velocity of fluid 
close to the boundary will be same as that of the boundary. If the boundary is stationary, 
the velocity of fluid at the boundary will be zero. The theory dealing with boundary layer 
flows is called boundary layer theory.  

According to the B.L. theory, the flow of fluid in the neighbourhood of the solid 
boundary may be divided into two regions as shown below  

 

 

 

Description of the Boundary Layer 

The simplest boundary layer to study is that formed in the flow along one side of 
a thin, smooth, flat plate parallel to the direction of the oncoming fluid. No other solid 
surface is near, and the pressure of the fluid is uniform. If the fluid were inviscid no 
velocity gradient would, in this instance, arise. The velocity gradients in a real fluid are 
therefore entirely due to viscous action near the surface.  

The fluid, originally having velocity U  in the direction of plate, is retarded in 

the neighbourhood of the surface, and the boundary layer begins at the leading edge of 
the plate. As more and more of the fluid is slowed down, the thickness of  the layer 
increases. The fluid in contact with the plate surface has zero velocity, ‘no slip’ and a 
velocity gradient exists between the fluid in the free stream and the plate surface.  

The flow in the first part of the boundary layer (close to the leading edge of the 
plate) is entirely laminar. With increasing thickness, however, the laminar layer becomes 
unstable, and the motion within it becomes disturbed. The irregularities of the flow 
develop into turbulence, and the thickness of the layer increases more rapidly. The 



changes from laminar to turbulent flow take place over a short length known as the 
transition region.  

 

 

                         Graph of velocity u against distance y from  surface at point  X 

 

Reynolds’ Number Concept 

If the Reynolds number locally were based on the distance from the leading edge 
of the plate, then it will be appreciated that, initially, the value is low, so that the fluid 
flow close to the wall may be categorized as laminar. However, as the distance from the 
leading edge increases, so does the Reynolds number until a point is reached where the 
flow regime becomes turbulent.  

For smooth, polished plates the transition may be delayed until Re equals 500000. 
However, for rough plates or for turbulent approach flows transition may occur at much 
lower values. Again, the transition does not occur in practice at one well-defined point 
but, rather, a transition zone is established between the two flow regimes.  

The figure above also depicts the distribution of shear stress along the plate in the 
flow direction. At the leading edge, the velocity gradient is large, resulting in a high shear 
stress. However, as the laminar region progresses, so the velocity gradient and shear 
stress decrease with thickening of the boundary layer. Following transition the velocity 
gradient again increases and the shear stress rises.  

Theoretically, for an infinite plate, the boundary layer goes on thickening 
indefinitely. However, in practice, the growth is curtailed by other surfaces in the 
vicinity.  

Factors affecting transition from Laminar to Turbulent flow Regimes  

As mentioned earlier, the transition from laminar to turbulent boundary layer 

condition may be considered as Reynolds number dependent, 

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x Re  and a 

figure of 5 x 105 is often quoted. 



However, this figure may be considerably reduced if the surface is rough. For Re 
<105, the laminar layer is stable; however, at Re near 2 x 105 it is difficult to prevent 
transition.  

The presence of a pressure gradient 
dx

dp  can also be a major factor. Generally, if 

dx
dp is positive, then transition Reynolds number is reduced, a negative 

dx
dp  

increasing transition Reynolds number.  

Boundary Layer thickness ( ) 

The velocity within the boundary layer increases from zero at the boundary 
surface to the velocity of the main stream asymptotically. Therefore the thickness of the 
boundary layer is arbitrarily defined as that distance from the boundary in which the 
velocity reaches 99 per cent of the velocity of the velocity of the free stream                            

(  Uu 99.0 ). It is denoted by the symbol . This definition however gives an 

approximate value of the boundary layer thickness and hence   is generally termed as 
nominal thickness of the boundary layer.  

The boundary layer thickness for greater accuracy is defined as in terms of certain 
mathematical expression which are the measure of the boundary layer on the flow. The 
commonly adopted definitions of the boundary layer thickness are:  

1. Displacement thickens ( *) 
2. Momentum thickness ( ) 

3. Energy thickness ( c ) 

 
- Displacement thickness ( *) 

The displacement thickness can be defined as the distance measured 
perpendicular to the boundary by which the main/free stream is displaced on account of 
formation boundary layer.  

Or  

It is an additional “Wall thickness” that would have to be added to compensate for 
the reduction in flow rate on account of boundary layer formation”. 

 

                 Displacement thickness 



 Let fluid of density  flow past a stationary plate with velocity U as shown 
above. Consider an elementary strip of thickness dry at a distance y from the plate.  

Assumed unit width, the mass flow per second through the elementary strip  
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Mass of flow per second through the elementary strip (unit width) if the plate 
were not there  
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Reduce the mass flow rate through the elementary strip  
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Total momentum of mass flow rate due to introduction of plate  

    



0
iiidyuU  

(If the fluid is incompressible)  

Let the plate is displaced by a distance  * and velocity of flow for the distance 
* is equal to the main/free stream velocity (i.e. U). Then, loss of the mass of the fluid/sec. 
flowing through the distance  *. 
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Equating eqns. (iii) and (iv) we get  
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Momentum Thickness ( ) 

This is defined as the distance which the total loss of momentum per second be 
equal to if it were passing a stationary plate. It is denoted by  .  

It may also be defined as the distance, measured perpendicular to the boundary of 
the solid body by which the boundary should be displaced to compensate for reduction in 
momentum of the flowing fluid on account of boundary layer formation.  

Refer to diagram of displacement thickness above,  



Mass of flow per second through the elementary strip = udy  

Momentum/Sec. of this fluid inside the boundary layer 

 = dyuUudy 2   

Momentum/sec. of the same mass of fluid before entering boundary layer = uUdy  

Loss of Momentum/sec. =  dyuUudyuuUdy   2  

Total loss of momentum/sec 
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Let   = Distance by which plate is displaced when the fluid is flowing with a 
constant velocity U. then loss of momentum/Sec. of fluid flowing through distance   
with a velocity U. 

  iiU  2  

Equating eqns. (i) and (ii), we have  
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Energy Thickness ( e ) 

Energy thickness is defined as the distance measured perpendicular to the 
boundary of the solid body, by which the boundary should be displaced to compensate 
for the reduction in K.E of the flowing fluid on account of boundary layer formation. It is 

denoted by ( e ) 

Refer to the above displacement thickness diagram,  

Mass of flow per second through the elementary strip = udy  

K.E of this fluid inside the boundary layer =   2
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K.E of the same mass of fluid before entering the boundary layer  
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Total loss of K.E of fluid =   
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Let e  = Distance by which the plate is displaced to compensate for the reduction in K.E  

Then loss of K.E. through e of fluid flowing with velocity  
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Equating eqns (i) and (ii), we have  
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Momentum Equation for Boundary Layer by Von Karman  

Von Karman suggested a method based on the momentum equation by the use of which 
the growth of a boundary layer along a flat plate, the wall shear stress and the drag force 
could be determined (when the velocity distribution in the boundary layer is known). 
Starting from the beginning of the plate, the method can be wed for both laminar and 
turbulent boundary layers.  

The figure below shows a fluid flowing over a thin plate (placed at zero incidence) with a 
free stream velocity equal to U. Consider a small length dx of the plate at a distance x 
from the leading edge as shown in fig. (a). Consider unit width of plate perpendicular to 
the direction of flow.  

 



 

Fig.(a) and (b) Momentum equation for boundary layer by Von Karman  

Let ABCD be a small element of a boundary layer (the edge DC represents the outer edge 
of the boundary layer).  

Mass rate of fluid entering through AD 
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  Mass rate of fluid entering the control volume through the surface DC  

= mass rate of fluid through BC – Mass rate of fluid through AD  
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The fluid is entering through  DC with a uniform velocity U.  

 Momentum rate of fluid entering the control volume of X-direction through AD. 
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Momentum rate of fluid leaving the Control Volume in X-direction through BC  
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Momentum rate of fluid entering the control volume through DC in X-direction  
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Rate of change of momentum of Control Volume  

= Momentum rate of fluid through BC – Momentum rate of fluid through AD – 
Momentum of fluid through DC  
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As per momentum principle, the rate of change of momentum on the control volume 
BCD must be equal to the total force on the control volume in the same direction. The 
only external force acting on the control volume is the share force acting on the side AB 
in the direction B to A (fig. b) above). The value of this force (drag force) is given by, 

 dxF oD    

Thus the total external force in the direction of the rate of change of momentum 
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Equating equation (x) and (xi), we have  
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But, 
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This equation is known as von Karman momentum equation for boundary layer flow and 
it is used to find out the frictional drag on smooth flat plate for both laminar and turbulent 
boundary layer. 

The following boundary conditions must be satisfied for any assumed velocity 
distribution.  

(i) At the surface of the plate valuefinite
dy

du
Uy  ,0,0  

(ii) At the outer edge of boundary layer 0,,, 
dy

du
yUuy   

The sheer stress, o  for a given velocity profile in laminar, transition or turbulent zone is 

obtained from equations (xii) and (xiii) above. Then drag force on a small distance dx of 
a plate is given by  
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- The ratio of the shear stress to the quantity 2

2
1 u  is known as the Local co-

efficient of drag” (or co-efficient of skin fraction) and is denoted by *
DC i.e. 
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- The ratio of the total drag force to the quantity 2
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coefficient of drag’ and is denoted by CD i.e. 
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 =Mass density of fluid  

A = Area of surface/plate, and  

U = free stream velocity  

EXAMPLE 1  

The velocity distribution in the boundary layer is given by 


y

U

u
 , where u is the 

velocity y from the plate and u=U at , y ,  being boundary layer thickness. Find  

i. The displacement thickness  
ii. The momentum thickness  
iii. The energy thickness and  

iv. The value of 


 *
 

Solution:  

Velocity distribution: 
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(ii) The momentum thickness  
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(iii)  
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(iv) The value of 

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Example 2 

The velocity distribution in the boundary layer is given by ,
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the boundary layer thickness  

Calculate the following 
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Velocity distribution: 
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Assignment  

(1) If velocity distribution in laminar boundary layer over a flat plate is given by 
second order polynomial U=a + by + cy2, determine its form using  the necessary 
boundary conditions  
 

(2) The velocity distribution in the boundary layer is given by    
7
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

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
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U

u
, calculate 

the following  

(i) Displacement thickness  
(ii) Momentum thickness  
(iii) Shape factor  
(iv) Energy thickness and  
(v) Energy loss due to boundary layer if at a particular section, the boundary layer 

thickness is 25mm and the free stream velocity is 15m/s. If the discharge 
through the boundary layer region is 6m3/s per metre width, express this 

energy loss in terms of metres of head. Take 3/2.1 mkg  

 



(3) In the boundary layer over the face of a high spillway, the velocity distribution 
was observed to have the following form: 

             

22.0













y

U

u
 

The free stream velocity U at a certain section was observed to be 30m/s and boundary 
layer thickness of 60mm was estimated from the velocity distribution measured at the 
section. The discharge passing over the spillway was 6m3/s per metre length of spillway, 
calculate  

i. The displacement thickness  
ii. The energy thickness, and  
iii. The loss of energy up to the section under consideration.  

Laminar Boundary Layer  

Let us find out boundary layer thickness ( ), shear stress ( o ) local co-efficient of drag 

(CD) for the following velocity distribution in the boundary layer:  
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Case 1: Velocity distribution: 
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(i) Boundary layer thickness  
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Substituting the value of 
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, we get  
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Also, according to Newton’s law of viscosity  
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Substituting this value in (iii), we get  
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Equating the values of o given by equations (ii) and iv, we get  
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Integrating both sides, we get  
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(ii) Shear stress o : 

From equation (iv), we have  
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(iii) Local Co-efficient of drag, *
DC  
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Equating the two of o , given by equation (vi) and (vii), we get  
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(iv) Co-efficient of drag, CD: 

We know that 
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(Where A – area of plate = L x B, L and B being length and width of the plate 
respectively) 
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CASE 2: Velocity distribution: 

3

2

1

2

3





















yy

U

u
 

i. Boundary layer thickness  : 
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Substituting the value of 
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Equating the two values of o  given by equation (ii) and (iii), we get  
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Integrating both sides, we get  
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(Where C=constant of integration)  
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Shear Stress, o  
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(iii) Local Coefficient of Drag, :*
DC  
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(iv) Co-efficient of drag (CD): 
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CASE 3: Velocity Distribution:  
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CASE 4: Velocity distribution .
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Example  1 

Air at atmospheric pressure and at 400K flows over a flat plate with a velocity of 5m/s. 
The transition from laminar to turbulent flow is assumed to take place at a Reynold 
number of 5 x 105; determine the distance from the leading edge of the plate at which 
transition occurs.  

Solution  

At KT 400 and at atmospheric pressure, from tables of properties of air,  
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The transition occurred at a distance L from the leading edge.  
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Example 2 

Air at  atmospheric press and at 350k flows over a flat plate with a velocity of 5m/s. The 
average drag coefficient Cm over a distance of 2m from the leading edge is 0.0019. 
Calculate the drag force acting per 1m width of the plate over the distance of 2m from the 
leading edge.  

Solution  
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At T of 350k and at atmospheric pressure  
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The flow is Laminar.  

Example 3 

Oil with a free stream velocity of 3.0m/s flows over a thin plate 1.25m wide and 2m long. 

Determine the boundary layer thickness and the shear stress at mid-length and calculate 

the total, double-sided resistance of the plate ( 
   ,/10,860 253 smkgm ) 

Solution  

Given: 3/860.2,25.1,/0.3 mkgmLmwidthsmUs    
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Calculate the Reynolds number at x=1m  
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Note that Re is low enough to allow the laminar boundary layer to survive over the whole 

plate.  

From  
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The skin friction coefficient (Coefficient of drag) is given by (CD)  
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For double sided  
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Example 4 

Air at 
20

1
 atm and at 345K has and msKg /10052.2 5 . Calculate the prandtl 

number.  
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Turbulent Boundary Layer (TBL) 

Turbulent flow  

Fluid motion is highly irregular, and is characterized by velocity fluctuations. These 
fluctuations enhance the transfer of momentum, energy and species, and hence increase 
surface friction as well as convection transfer rates. Fluid mixing resulting from the 
fluctuations makes turbulent B.L thickness larger and BL profiles (velocity, temp and 
conc.) flatter than in laminar flow. In the TBL, 3 different regions may be delineated  



(a) Laminar or viscous sublayer – in which transport is dominated by diffusion and 
the velocity profile is nearly linear.  

(b) Buffer layer – adjacent layer to viscous sublayer in which diffusion and turbulent 
mixing are comparable.  

(c) Turbulent zone – transport is dominated by turbulent mixing 

The location xc at which transition begins is determined by a dimensionless grouping of 
variables called Reynolds numbers  



 XU
x

Re
 

cx ,Re for BL calculation is taken to be 5 x 105  

For a flow over a flat plate, the value of cx ,Re  varies from 1 x 105 to 3 x 106 depending 

on surface roughness and the turbulence level of the free stream.  

x in the above expression is the characteristic length, the distance measured along the 
plate.  

Turbulent Boundary Layer  

As compared to laminar boundary layers, the turbulent boundary layers are thicker. For in 
a turbulent boundary layer, the velocity distribution is more uniform than in a laminar 
boundary layer due to intermingling of fluid particles between different layers of the 
fluid. The velocity distribution in a turbulent boundary layer follows a logarithmic law 
i.e. u~log y, which can also be represented by a power law of the type.  
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Where, n = 
7

1
 (approx..) for Re < 107 but > 5 x 105  
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This is known as one-seventh power law  

Let us now find the value of DDDo CFC ,,, *   for the velocity distribution given by 

equation (ii) i.e. 
7
1













y

U

u
 

(i) 
 5

1

Re

371.0

x

x
  



(ii) 
 5

1

Re

0576.0

2

2

x

o

U



  

(iii) 
 5

1

Re

0576.0*

x

DC   

(iv) 
 

LB
U

F
L

D 
5
1

Re

072.0

2

2
 

(v) 
 5

1

Re

072.0

L

DC   

Note: This is valid for 75 10Re105  L  

For Reynolds no between 107 and 109, the following relationship suggested by Prandtl 
and Schlichting hold good  
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Example  

Air flows over a smooth flat plate at a velocity of 4.39m/s. The density of air is 
1.031kg/m3 and the kinematic viscosity is 1.34 x 10-5m2/s. The plate’s length is 12.2m in 
the direction of the flow. Calculate  

(a) The boundary layer thickness at 15.24cm and 12.2m respectively from the leading 
edge.  

(b) The drag coefficient CD, for the plate surface  

  



Solution  

At the location x = 15.24cm, the Reynolds number is  
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and the flow is laminar. The boundary layer thickness is obtained from Blasius solution.  
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At the location x = 12.2m, the Reynolds number is  
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And the flow is turbulent. The boundary layer thickness is  
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The drag coefficient CD can be obtained from  
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SEPARATION OF BOUNDARY LAYER  

When a solid body is immersed in a flowing fluid, a thin layer of fluid called the 
boundary layer is formed adjacent to the solid body. In this thin layer of fluid, the 
velocity varies from zero to free stream velocity in the direction normal to the solid body. 
Along the length of the solid body, the thickness of the boundary layer increases. The 
fluid layer adjacent to the solid surface has to do work against surface friction at the 



expense of its kinetic energy. This loss of the kinetic energy is recovered from the 
immediate fluid layer in contact with the layer adjacent to solid surface through 
momentum exchange process. Thus the velocity of the layer goes on decreasing. Along 
the length of the solid body, at a certain point a stage may come when the boundary layer 
may not be able to keep sticking to the solid body if it cannot provide kinetic energy to 
overcome the resistance offered by the solid body. In other words, the boundary layer 
will be separated from the surface. This phenomenon is called the boundary layer 
separation. The point on the body at which the boundary layer is on the verge of 
separation from the surface is called point of separation.  

Effect of Pressure Gradient on Boundary Layer Separation  

The effect of pressure gradient 








dx

dp
 on boundary layer separation can be explained by 

considering the flow over a curved surface ABCSD as shown in the figure below. In the 
region ABC of the curved surface, the area of flow decreases and hence velocity 
increases. This means that flow get accelerated in this region. Due to the increase of the 
velocity, the pressure decreases in the direction of the flow and hence pressure gradient 

dx

dp
is negative in this region. As long as 

dx

dp
<0, the entire boundary layer moves forward 

as shown.  

Region CSD of the curved: the pressure is minimum at the points C. Along the region 
CSD of the curved surface, the area of flow increases and hence velocity of flow along 
the direction of fluid decreases. Due to decrease of velocity, the pressure increases in the 

direction of flow and hence pressure gradient 
dx

dp
 is positive or 

dx

dp
 >0. Thus is the 

region CSD, the pressure gradient is positive and velocity of fluid layers along the 
direction of flow decreases. As earlier mentioned, the velocity of the layer adjacent to the 
solid surface along the length of the solid surface goes on decreasing as the kinetic 
energy of the layer is used to overcome the frictional resistance of the surface. Thus the 
combine effect positive pressure gradient and surface resistance reduces the momentum 
of the fluid. A stage comes, when the momentum of the fluid is unable to overcome the 
surface resistance and the boundary layer starts separating from the surface at the point S. 
Downstream the point S, the flow is taking place in reverse direction and the velocity 
gradient becomes negative.  



 

           Effect of pressure gradient on boundary layer separation  

 

The flow separation depends upon factors such as  

(i) The curvature of the surface 
(ii) The Reynolds number of flow  
(iii) The roughness of the surface  

The velocity gradient for a given velocity profile, exhibits the following characteristics 
for the flow to remain attached, get detached or be on the verge of separation:  
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Methods of preventing the Separation of Boundary Layer  

The following are some of the methods generally adopted to retard or arrest the flow 
separation:  

1. Streamlining the body shape  
2. Tripping the boundary layer from laminar to turbulent by provision of surface 

roughness  
3. Sucking the retarded flow  
4. Injecting high velocity fluid in the boundary layer  
5. Providing slots near the leading edge 



6. Guidance of flow in a confined passage 
7. Providing a rotating cylinder near the leading edge 
8. Energizing the flow by introducing optimum amount of swirl in the incoming 

flow  

Example  

For the following velocity profiles, determine whether the flow is attached or detached or 
on the verge of separation:  
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Differentiating w.r.t.y the above equation, we get  
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REGIMES OF EXTERNAL FLOW  

When a fluid is flowing over a stationary body, a force is exerted by the fluid on the 
body. Similarly, when a body is moving in a stationary fluid, a force is exerted by the 
fluid on the body. Also, when both the body and fluid are moving at different velocities, a 
force is exerted by the fluid on the body. Some of the examples of the fluids flowing over 
stationary bodies or bodies moving in a stationary fluid are:  

(a) Flow of air over buildings, 
(b) Flow of water over bridges  
(c) Submarines, ships, airplanes and automobiles moving through water and air  

Force Exerted by a Flowing fluid on Stationary Bodies  

Consider a body held stationary in a real fluid which is flowing at a uniform velocity U as 
shown in the figure below  

                                    U                                                                     



Force on a stationary body  

The fluid will exert a force on the stationary body. The total force (FR) exerted by the 
fluid on the body is perpendicular to the surface of the body. Thus the total force is 
inclined to the direction of motion. 

The total force can be resolved into two components, or in the direction of motion and the 
other perpendicular to the direction of motion.  

 

DRAG 

When a body is immersed in a fluid and is in relative motion with respect to it, the drag is 
defined as that component of the resultant or total force (FR) acting on the body which is 
in the direction of the relative motion. This is denoted by FD 

LIFT  

The component of the total or resultant force (FR) acting in the direction normal or 
perpendicular to the relative motion is called lift i.e. the force component perpendicular 
to drag. This component is denoted by FL. Lift force occurs only when the axis of the 
body is inclined to the direction of fluid flow. If the axis of the body is parallel to the 
direction of fluid flow, lift force is zero. In that case only drag force acts. If the fluid is 
assumed ideal and the body is symmetrical such as a sphere or cylinder, both the drag and 
lift will be zero.  

Recall, frictional drag was discussed in connection with the boundary layer theory. It is 
the force on the body acting in the direction of relative motion due to fluid shear stress at 
the surface. Thus, in external flow, the immersed body is subjected to frictional drag over 
its entire surface. Total drag on the body, often called profit drag is therefore made up of 
two contributions, namely the pressure drag and the skin friction drag. Thus, profile drag 
= pressure drag + skin frictional drag. 

 

EXPRESSION FOR DRAG AND LIFT  

Consider an arbitrary shaped solid body placed in a real fluid, which is flowing with a 
uniform velocity U in a horizontal direction as shown in the figure below. Consider a 
small elemental area dA on the surface of the body.  

The force acting on the surface area dA are:  

1. Pressure force equal to pxdA, acting perpendicular to the surface and  

2. Shear force equal to dAo  , acting along the tangential direction to the surface  

 



                                                                

                                               Drag and Lift 

 

Let  = Angle made by pressure force with horizontal direction  

(a) Drag force (FD): The drag force on elemental area = force due to pressure in the 
direction of fluid motion + force due to shear stress in the direction of fluid 
motion  

=    dASinCosPdaCosdACosPdA oo  90  

   
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The term  dAPCos is called the pressure drag or form drag while           the 

term  dASino  is called the friction drag or skin drag or shear drag.   

(b) Lift Force (FL): The lift force on elemental area = Force due to pressure in the 
direction perpendicular to the direction of motion + Force due to shear stress in 
the direction perpendicular to the direction of motion   

   dACosSinPdASindASinPdA o
o

o  90  

The negative is taken with pressure force as it is acting in the downward direction while 
shear force is acting vertically up.  

   pdASinCosdAFliftTotal oL,  

The drag and lift for a body moving in a fluid of density e, at a uniform velocity U are 
calculated mathematically as  
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where  

 CD= Coefficient of drag  

 CL= Coefficient of Lift  

A = Area of the body which is the projected area of the body perpendicular to the 
direction of flow 

= largest projected area of the immersed body  

Then resultant force on the body, FR= 22
LD FF   

Example 1 

A flat plate 1.5m x 1.5m moves as 50km/hr in stationary air of density 1.15kg/m3. If the 
coefficients of drag and lift are 0.15 and 0.75 respectively. Determine:  

(i) The lift force  
(ii) The drag force 
(iii) The resultant force and  
(iv) The power required to keep the plate in motion  

Solution  

Area of the plate, A = 1.5 x 1.5 = 2.25m2 

Velocity of the plate, U = 50km/hr = sm /89.13
6060
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Density of air, 3/15.1 mkg  

Coefficient of drag, CD = 0.15 

Coefficient of lift, CL= 0.75 

(i) Lift force (FL) = CLA 
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(ii) Drag Force (FD)= CDA 
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(iii) Resultant force (FR) = 2222 20.18744.37  LD FF  
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(iv) Power Required to keep the plate in motion  
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Example 2  

Find the difference in drag force exerted on a flat plate of size 2m x 2m when the plate is 
moving at a speed of 4m/s normal to its plane in (i) water (ii) air of density 1.24kg/m3. 
Coefficient of drag is given as 1.15.  

Solution  

Area of plate, A = 2 x 2 = 4m2 

Velocity of Plate, U = 4m/s 

Coefficient of drag CD= 1.15 

(i) Drag force when the plate is moving in water  

2
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(ii) Drag force when the plate is moving in air,  
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Difference in drag force = (i) – (ii)  

   = 36800 – 45.6 

   = 36754.4N 

 

 

 

 


