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LECTURE NOTE ON MCE 326. 

ENGR. ALIYU, S.J. 

Flow in Closed Conduits (Pipes) 
 
A). PARAMETERS INVOLVED IN THE STUDY OF FLOW THROUGH CLOSED 
CONDUITS. 
In this course the determination of drop in pressure in pipe flow systems due to friction is 

attempted. 

INTRODUCTION. 

Fluids are conveyed (transported) through closed conduits in numerous industrial processes. It is 

found necessary to design the pipe system to carry a specified quantity of fluid between specified 

locations with minimum pressure loss. It is also necessary to consider the initial cost of the 

piping system. The flow may be laminar with fluid flowing in an orderly way, with layers not 

mixing macroscopically. The momentum transfer and consequent shear induced is at the 

molecular level by pure diffusion. Such flow is encountered with very viscous fluids. Blood flow 

through the arteries and veins is generally laminar. Laminar condition prevails up-to a certain 

velocity in fluids flowing in pipes. The flow turns turbulent under certain conditions with 

macroscopic mixing of fluid layers in the flow. At any location the velocity varies about a mean 

value. Air flow and water flow in pipes are generally turbulent. The flow is controlled by (i) 

pressure gradient (ii) the pipe diameter or hydraulic mean diameter (iii) the fluid 

properties like viscosity and density and (iv) the pipe roughness. The velocity distribution in 

the flow and the state of the flow namely laminar or turbulent also influence the design. Pressure 

drop for a given flow rate through a duct for a specified fluid is the main quantity to be 

calculated. The inverse-namely the quantity flow for a specified pressure drop is to be also 

worked out on occasions. The basic laws involved in the study of incompressible flow are (i) 

Law of conservation of mass and (ii) Newton’s laws of motion. Besides these laws, modified 

Bernoulli equation is applicable in these flows. 

 

B). BOUNDARY LAYER CONCEPT IN THE STUDY OF FLUID FLOW. 

 

When fluids flow over surfaces, the molecules near the surface are brought to rest due to the 

viscosity of the fluid. The adjacent layers also slow down, but to a lower and lower extent. This 

slowing down is found limited to a thin layer near the surface. The fluid beyond this layer is not 

affected by the presence of the surface. The fluid layer near the surface in which there is a 

general slowing down is defined as boundary layer. The velocity of flow in this layer increases 

from zero at the surface to free stream velocity at the edge of the boundary layer. The 

development of the boundary layer in flow over a flat plate and the velocity distribution in the 

layer are shown in Fig.1. Pressure drop in fluid flow is to overcome the viscous shear force 

which depends on the velocity gradient at the surface. Velocity gradient exists only in the 

boundary layer. The study thus involves mainly the study of the boundary layer. The boundary 

conditions are (i) at the wall surface, (zero thickness) the velocity is zero. (ii) at full thickness the 

velocity equals the free stream velocity (iii) The velocity gradient is zero at the full thickness. 

Use of the concept is that the main analysis can be limited to this layer. 
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Figure. 1 Boundary Layer Development (flat-plate) 

 

C). BOUNDARY LAYER DEVELOPMENT OVER A FLAT PLATE. 

The situation when a uniform flow meets with a plane surface parallel to the flow is shown in 

Fig.1. At the plane of entry (leading edge) the velocity is uniform and equals free stream 

velocity. Beyond this point, the fluid near the surface comes to rest and adjacent layers are 

retarded to a larger and larger depth as the flow proceeds. The thickness of the boundary layer 

increases due to the continuous retardation of flow. The flow initially is laminar. There is no 

intermingling of layers. Momentum transfer is at the molecular level, mainly by diffusion. The 

viscous forces predominate over inertia forces. Small disturbances are damped out. Beyond a 

certain distance, the flow in the boundary layer becomes turbulent with macroscopic mixing of 

layers. Inertia forces become predominant. This change occurs at a value of Reynolds number 

(given Re = ux/v, where v is the kinematic viscosity) of about 5 × 10
5
 in the case of flow over 

flat plates. Reynolds number is the ratio of inertia and viscous forces. In the turbulent region 

momentum transfer and consequently the shear forces increase at a more rapid rate. When a fluid 

flows over a stationary surface, e.g. the bed of a river, or the wall of a pipe, the fluid touching the 

surface is brought to rest by the shear stress τo at the wall. The velocity increases from the wall to 

a maximum in the main stream of the flow. 

 

                                                
Looking at this two-dimensionally we get the above velocity profile from the wall to the centre 

of the flow. This profile doesn’t just exit, it must build up gradually from the point where the 

fluid starts to flow past the surface - e.g. when it enters a pipe. If we consider a flat plate in the 
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middle of a fluid, we will look at the build up of the velocity profile as the fluid moves over the 

plate. Upstream the velocity profile is uniform, (free stream flow) a long way downstream we 

have the velocity profile we have talked about above. This is the known as fully developed flow. 

But how do we get to that state? This region, where there is a velocity profile in the flow due to 

the shear stress at the wall, we call the boundary layer. The stages of the formation of the 

boundary layer are shown in the figure below: 

  

 

 
We define the thickness of this boundary layer as the distance from the wall to the point where 

the velocity is 99% of the ―free stream‖ velocity, the velocity in the middle of the pipe or river. 

boundary layer thickness, = distance from wall to point where u = 0.99 umainstream .The value of 

will increase with distance from the point where the fluid first starts to pass over the boundary - 

the flat plate in our example. It increases to a maximum in fully developed flow. 

Correspondingly, the drag force D on the fluid due to shear stress o at the wall increases from 

zero at the start of the plate to a maximum in the fully developed flow region where it remains 

constant. We can calculate the magnitude of the drag force by using the momentum equation. 

But this complex and not necessary for this course. Our interest in the boundary layer is that its 

presence greatly affects the flow through or round an object. So here we will examine some of 

the phenomena associated with the boundary layer and discuss why these occur. 

 

D) DEVELOPMENT OF BOUNDARY LAYER IN CLOSED CONDUITS (PIPES). 

In this case the boundary layer develops all over the circumference. The initial development of 

the boundary layer is similar to that over the flat plate. At some distance from the entrance, the 

boundary layers merge and further changes in velocity distribution becomes impossible. The 

velocity profile beyond this point remains unchanged. The distance up to this point is known as 

entry length. It is about 0.04 Re × D. The flow beyond is said to be fully developed. The velocity 

profiles in the entry region and fully developed region are shown in Fig. 2a. The laminar or 
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turbulent nature of the flow was first investigated by Osborn Reynolds in honour of whom the 

dimensionless ratio of inertia to viscous forces is named. The flow was observed to be laminar 

till a Reynolds number value of about 2300. The Reynolds number is calculated on the basis of 

diameter (ud/v). In pipe flow it is not a function of length. As long as the diameter 
 

             
                                 a. Laminar flow. 

 

                              
                                                                                        b. Turbulent flow. 

                                                           Figure 2 Boundary layer development (pipe flow) 
 

is constant, the Reynolds number depends on the velocity for a given flow. Hence the value of 

velocity determines the nature of flow in pipes for a given fluid. The value of the flow Reynolds 

number is decided by the diameter and the velocity and hence it is decided at the entry itself. The 

development of boundary layer in the turbulent range is shown in Fig.2b. In this case, there is a 

very short length in which the flow is laminar. This length, x, can be calculated using the relation 

ux/v = 2000. After this length the flow in the boundary layer turns turbulent. A very thin laminar 

sub-layer near the wall in which the velocity gradient is linear is present all through. After some 

length the boundary layers merge and the flow becomes fully developed. The entry length in 

turbulent flow is about 10 to 60 times the diameter. The velocity profile in the fully developed 

flow remains constant and is generally more flat compared to laminar flow in which it is 

parabolic. 
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E). FEATURES OF LAMINAR AND TURBULENT FLOWS. 

 

In laminar region the flow is smooth and regular. The fluid layers do not mix macroscopically 

(more than a molecule at a time). If a dye is injected into the flow, the dye will travel along a 

straight line. Laminar flow will be maintained till the value of Reynolds number is less than of 

the critical value (2300 in conduits and 5 × 10
5 

in flow over plates). In this region the viscous 

forces are able to damp out any disturbance. The friction factor, f for pipe flow defined as  
   

(      ⁄ )⁄  is obtainable as f = 64/Re where      is the wall shear stress, u is the average 

velocity and Re is the Reynolds number. In the case of flow through pipes, the average velocity 

is used to calculate Reynolds number. The dye path is shown in Fig.3. 

 

               
                                          Figure 3 Reynolds Experiment. 

 

In turbulent flow there is considerable mixing between layers. A dye injected into the flow will 

quickly mix with the fluid. Most of the air and water flow in conduits will be turbulent. 

Turbulence leads to higher frictional losses leading to higher pressure drop. The friction factor is 

given by the following empirical relations. 

 
 

                                f = 0.316/Re
0.25

        for Re < 2 × 10
4
                                                                                   (1) 

 

                               f = 0.186/Re
0.2

           for Re > 2 × 10
4
                                                                                        (2) 

 

 

These expressions apply for smooth pipes. In rough pipes, the flow may turn turbulent below the 

critical Reynolds number itself. The friction factor in rough pipe of diameter D, with a roughness 

height of ε, is given by 

                     ,  *(     ⁄ )           ⁄ +- ⁄                                              (3) 
 

The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow. Osborne Reynolds 

11842–19122, a British scientist and mathematician, was the first to distinguish the difference 

between these two classifications of flow by using a simple apparatus as shown in Fig. 3a. If 

water runs through a pipe of diameter D with an average velocity V, the following characteristics 
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are observed by injecting neutrally buoyant dye as shown. For ―small enough flow-rates‖ the dye 

streak (a streakline) will remain as a well-defined line as it flows along, with only slight blurring 

due to molecular diffusion of the dye into the surrounding water. For a somewhat larger 

―intermediate flowrate‖ the dye streak fluctuates in time and space, and intermittent bursts of 

irregular behavior appear along the streak. On the other hand, for ―large enough flow-rates‖ the 

dye streak almost immediately becomes blurred and spreads across the entire pipe in a random 

fashion. These three characteristics, denoted as laminar, transitional, and turbulent flow, 

respectively, are illustrated in Fig.3b. The curves shown in Fig.3c. represent the x component of 

the velocity as a function of time at a point A in the flow. The random fluctuations of the 

turbulent flow (with the associated particle mixing) are what disperse the dye throughout the pipe 

and cause the blurred appearance illustrated in Fig. 3b. For laminar flow in a pipe there is only 

one component 

 

 

 

                                            
 
                                                          (a) Experiment to illustrate type of flow.  

        
                                                                 (b) Typical dye streaks. 
 

                           
                                         (3c). Time dependence of fluid velocity at a point. 

 

of velocity, For turbulent flow the predominant component of velocity is also along the pipe, but 

it is unsteady 1random2 and accompanied by random components normal to the pipe axis, Such 

motion in a typical flow occurs too fast for our eyes to follow. Slow motion pictures of the flow 

can more clearly reveal the irregular, random, turbulent nature of the flow. We should not label 
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dimensional quantities as being ―large‖ or ―small,‖ such as ―small enough flow-rates‖ in the 

preceding paragraphs. Rather, the appropriate dimensionless quantity should be identified and 

the ―small‖ or ―large‖ character attached to it. A quantity is ―large‖ or ―small‖ only relative to a 

reference quantity. The ratio of those quantities results in a dimensionless quantity. For pipe flow 

the most important dimensionless parameter is the Reynolds number, Re—the ratio of the inertia 

to viscous effects in the flow. Hence, in the previous paragraph the term flow-rate should be 

replaced by Reynolds number, where V is the average velocity in the pipe. That is, the flow in a 

pipe is laminar, transitional, or turbulent provided the Reynolds number is ―small enough,‖ 

―intermediate,‖ or ―large enough.‖ It is not only the fluid velocity that determines the character 

of the flow—its density, viscosity, and the pipe size are of equal importance. These parameters 

combine to produce the Reynolds number. The distinction between laminar and turbulent pipe 

flow and its dependence on an appropriate dimensionless quantity was first pointed out by 

Osborne Reynolds in 1883. The Reynolds number ranges for which laminar, transitional, or 

turbulent pipe flows are obtained cannot be precisely given. The actual transition from laminar to 

turbulent flow may take place at various Reynolds numbers, depending on how much the flow is 

disturbed by vibrations of the pipe, roughness of the entrance region, and the like. For general 

engineering purposes 1i.e., without undue precautions to eliminate such disturbances2, the 

following values are appropriate: The flow in a round pipe is laminar if the Reynolds number is 

less than approximately 2100. The flow in a round pipe is turbulent if the Reynolds number is 

greater than approximately 4000. For Reynolds numbers between these two limits, the flow may 

switch between laminar and turbulent conditions in an apparently random fashion (transitional 

flow). 

 

F). HYDRAULICALLY “ROUGH” AND “SMOOTH” PIPES. 

 

In turbulent flow, a thin layer near the surface is found to be laminar. As no fluid can flow up 

from the surface causing mixing, the laminar nature of flow near the surface is an acceptable 

assumption. The thickness of the layer     is estimated as 

                                                                √ ⁄                                                  (4) 

If the roughness height is ε and if     > 6ε, then the pipe is considered as hydraulically smooth. 

Any disturbance caused by the roughness is within the laminar layer and is smoothed out by the 

viscous forces. So the pipe is hydraulically smooth. If   < 6ε, then the pipe is said to be 

hydraulically rough. The disturbance now extends beyond the laminar layer. Here the inertial 

forces are predominant. So the disturbance due to the roughness cannot be damped out. Hence 

the pipe is hydraulically rough. It may be noted that the relative value of the roughness 

determines whether the surface is hydraulically rough or smooth. 

Surface roughness effect 
Despite its thinness, the laminar sub-layer can play a vital role in the friction characteristics of 

the surface. This is particularly relevant when defining pipe friction. In turbulent flow if the 

height of the roughness of a pipe is greater than the thickness of the laminar sub-layer then this 

increases the amount of turbulence and energy losses in the flow. If the height of roughness is 

less than the thickness of the laminar sub-layer the pipe is said to be smooth and it has little 

effect on the boundary layer. In laminar flow the height of roughness has very little effect. 

 

G). CONCEPT OF “HYDRAULIC DIAMETER”: (Dh).  
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The frictional force is observed to depend on the area of contact between the fluid and the 

surface. For flow in pipes the surface area is not a direct function of the flow. The flow is a direct 

function of the sectional area which is proportional to the square of a length parameter. The 

surface area is proportional to the perimeter. So for a given section, the hydraulic diameter which 

determines the flow characteristics is defined by equation 5and is used in the calculation of 

Reynolds number. 
                                                                                      Dh = 4A/P                  (5) 

Where Dh is the hydraulic diameter, A is the area of flow and P is the perimeter of the section. 

This definition is applicable for any cross section. For circular section Dh = D, as the equals 

(4πD
2
/4πD). For flow through ducts the length parameter in Reynolds number is the hydraulic 

diameter. i.e., 

            

                                                                                    Re = Dh× u/v                           (6) 

 

Example 1 In model testing, similarity in flow through pipes will exist if Reynolds numbers are 

equal. Discuss how the factors can be adjusted to obtain equal Reynolds numbers. Reynolds 

number is defined as Re = uDρ/μ. For two different flows 

 

                                                     
      

  
  

      

  
    

    

  
 
    

  
 

 

As the kinematic viscosities v1 and v2 are fluid properties and cannot be changed easily (except 

by changing the temperature) the situation is achieved by manipulating u2D2 and u1 D1 

 

                                                                                     
  

  
  

    

    
                             (A) 

 

this condition should be satisfied for flow similarity in ducts. Reynolds number will increase 

directly as the velocity, diameter and density. It will vary inversely with the dynamic viscosity of 

the fluid. Reynolds number can be expressed also by Re = G.D/μ where G is the mass velocity in 

kg /m
2
s. So Reynolds number in a given pipe and fluid can be increased by increasing mass 

velocity. For example if flow similarity between water and air is to be achieved at 20 °C then 

(using v values in eqn. A) 

 

                                     
       

       
 = 
                                         

                                     
 

If diameters are the same, the air velocity should be about 15 times the velocity of water for flow 

similarity. If velocities should be the same, the diameter should be 15 times that for water. For 

experiments generally both are altered by smaller ratios to keep u × D constant. 
 

H). VELOCITY VARIATION WITH RADIUS FOR FULLY DEVELOPED LAMINAR 

FLOW IN PIPES. 

 

In pipe flow, the velocity at the wall is zero due to viscosity and the value increases as the centre 

is approached. The variation if established will provide the flow rate as well as an average 

velocity. Consider an annular element of fluid in the flow as shown in Fig. 4a. The dimensions 

are: inside radius = r; outside radius = r + d, length = dx. 

                                          Surface area = 2πrdx 
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Assuming steady fully developed flow, and using the relationship for force balance, the velocity 

being a function of radius only. 

 
 

 
                                                                                  Figure 4 

 

Net pressure force = dp 2πrdr 

 

Net shear force = 
 

  
. 

  

  
    /     equating the forces and reordering, 

 

                                                              
 

  
. 

  

  
/ = 

 

 

  

  
  

Integrating 

                                
  

  
 = 

 

 

  

  

  

 
     at r = 0,   C = 0 

Integrating again and after simplification, 

 

  
 

 

  

  

  

 
   

 at r = R,   = 0 (at the wall) 

 

                               B = 
 

 

  

  

  

 
 

 

                          =  
 

 

  

  

  

 
[  .

 

 
/
 

]                                          (7) 

 

The velocity is maximum at r = 0, 

 

                               
 

 

  

  

  

 
                                                    (8) 

 

At a given radius, dividing 7and 8, we get 9, which represents parabolic distribution. 
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    .

 

 
/
 

                                            (9) 

 

If the average velocity is       then the flow is given by Q = πR
2            (A) 

The flow Q is also given by the integration of small annular flow streams as in the element 

concerned, 

 

                                   ∫       
 

 
 but u =     [  .

 

 
/
 

] 

Substituting and integrating between the limits 0 to R, and using equation A 

 

                                    
   

 
                 2      =      

The average velocity is half of the maximum velocity, 

 

                                      
 

    
  [   .

 

 
/
 

]                                        (10) 

In turbulent flow the velocity profile is generally represented by the equation, 

 

                                   
 

    
 .   

 

 
/
(  ⁄ )

  where n varies with Reynolds number. 

The average velocity is 0.79 umax for n = 6 and 0.87 umax for n = 10. 

 

I). DARCY–WEISBACH EQUATION FOR CALCULATING PRESSURE DROP. 

In the design of piping systems the choice falls between the selection of diameter and the 

pressure drop. The selection of a larger diameter leads to higher initial cost. But the pressure 

drop is lower in such a case which leads to lower operating cost. So in the process of design of 

piping systems it becomes necessary to investigate the pressure drop for various diameters of 

pipe for a given flow rate. Another factor which affects the pressure drop is the pipe roughness. 

It is easily seen that the pressure drop will depend directly upon the length and inversely upon 

the diameter. The velocity will also be a factor and in this case the pressure drop will depend in 

the square of the velocity (refer Bernoulli equation). 

Hence we can say that, 

                                                           
   

  
                                       (11) 

 

The proportionality constant is found to depend on other factors. In the process of such 

determination Darcy defined or friction factor f as; 

                                                             (   
    ⁄ )⁄                     (12) 

This quantity is dimensionless which may be checked. Extensive investigations have been made 

to determine the factors influencing the friction factor. It is established that in laminar flow f 

depends only on the Reynolds number and it is given by; 

 

                                                             
  

 
                                         (13) 

 

In the turbulent region the friction factor is found to depend on Reynolds number for smooth 

pipes and both on Reynolds number and roughness for rough pipes. Some empirical equations 
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are given in section E and also under discussions on turbulent flow. The value of friction factor 

with Reynolds number with roughness as parameter is available in Moody diagram, given below. 

 
 

 

 

 

 

 

 

 

Using the definition of Darcy friction factor and conditions of equilibrium, expression for 

pressure drop in pipes is derived in this section. Consider an elemental length L in the pipe. The 

pressures at sections 1 and 2 are P1and P2. 

The other force involved on the element is the wall shear,   , Net pressure force in the element is 

(P1 –P2), Net shear force in the element is    πDL Force balance for equilibrium yields; 

 

                             (     )
   

 
                                                (14) 

 

From the definition friction factor, 
   

                                                 (   
    ⁄ )⁄   
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 Substituting and letting (P1–P2) to be ∆P. 

 

   
   

 
 
    

 

   
       

 

This reduces to; 

  

                                                  
     

 

     
                                        15 

 

 

                                                     
                                                                         Figure 5 
 

 

This equation known as Darcy-Weisbach equation and is generally applicable in most of the pipe 

flow problems. As mentioned earlier, the value of f is to be obtained either from equations or 

from Moody diagram. The diameter for circular tubes will be the hydraulic diameter Dh defined 

earlier in the text. It is found desirable to express the pressure drop as head of the flowing fluid. 

In this case as 

                                                      
 

 
  

   

  
  

 

                                                    
    

 

   
                              (16) 

 

The velocity term can be replaced in terms of volume flow and the equation obtained is found 

useful in designs as Q is generally specified in designs. 

 

                                                             
  

   
     

  
    

    
 

Substituting in (16), we get; 

                                                  
     

     
                                             17 

 

It is found that     
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Another coefficient of friction Cf is defined as  Cf = f /4 

 

In this case;                                
 

 

  

  

  

 
[  .

 

 
/
 

]                        18 

Now a days equation 15 are more popularly used as value of f is easily available.  

 

 

J). HAGEN–POISEUILLE EQUATION FOR FRICTION DROP. 

 

In the case of laminar flow in pipes another equation is available for the calculation of pressure 

drop. The equation is derived in this section. Refer to section (H) equation (7) 

 

                             =  
 

 

  

  

  

 
[  .

 

 
/
 

] 

 

 
  

  
 can be approximated to ∆P/L as the pressure drop is uniform along the length L under steady 

laminar flow; 

 

Using eqn (8),            
 

 

  

  

  

 
      

  

                                    
  

  
 
    

  
 

 

                               
  

  
   = 

    

  
 = 

     

  
 , Substituting for  

  

  
 as 

  

 
 

 

                                      =  
     

  
                                 19 

 

This can also be expressed in terms of volume flow rate Q as 

 

  
   

 
    

 

                                                       
  

   
  , substituting,    = 128μLQ/πD

4
         20 

 

Converting ∆P as head of fluid, 

                                                                        
        

   
                                         21 

This equation is known as Hagen-Poiseuille equation. g0 is the force conversion factor having a 

value of unity in the SI system of unit. Also (μ/ρ) = ѵ. Equations 19, 20 and 21 are applicable for 

laminar flow only whereas Darcy-Weisbach equation (16) is applicable for all flows. 
 

Example 2 Using the Darcy-Weisbach equation and the Hagen Poiseuille equation obtain an 

expression for friction factor f, in terms of Reynolds number in laminar region. 
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The equation are  

 

                                                    
    

 

   
  and    

      

   
 

equating and simplifying a very useful relationship is obtained, namely 

                                                  
     

   
 
  

  
 , as .

   

 
/ =Re 

 

In the laminar flow region the friction factor can be determined directly in terms of Reynolds 

number. 

 

K). SIGNIFICANCE OF REYNOLDS NUMBER IN PIPE FLOW. 

Reynolds number is the ratio of inertia force to viscous force. The inertia force is proportional to 

the mass flow and velocity i.e.,(ρu.u). The viscous force is proportional to μ(du/dy) or μu/D, 

dividing 

 

                                               
             

             
 = 
    

  
 = 

  

 
 

Viscous force tends to keep the layers moving smoothly one over the other. Inertia forces tend to 

move the particles away from the layer. When viscous force are sufficiently high so that any 

disturbance is smoothed down, laminar flow prevails in pipes. When velocity increases, inertia 

forces increase and particles are pushed upwards out of the smoother path. As long as Reynolds 

number is below 2,300, laminar flow prevails in pipes. The friction factor in flow is also found to 

be a function of Reynolds number (in laminar flow, f = 64/Re). 

The Reynolds number, Re, can be described as a ratio of inertial to viscous forces and note that if 

Re is large the diffusive terms (viscous force terms) will be small; hence, flow behavior will be 

dominated by the inertial forces (and possibly also pressure and body forces). A more precise 

way to obtain this characterization is to note that the inertial forces are associated with 

accelerations and thus come from Finertial = ma. Now observe that 

 

                                                 and          ⁄⁄  

 

From this it follows that 

                                          
    

 
                       

On the other hand, we can estimate the viscous forces based on Newton’s law of viscosity: 

 

                                            viscous force      
  

  
   

 

 
         

 

From this it follows that 

                                       
             

             
 
     

   
 
   

 
     

 

Boundary layers in pipes 
As flow enters a pipe the boundary layer will initially be of the laminar form. This will change 

depending on the ration of inertial and viscous forces; i.e. whether we have laminar (viscous 



15 
 

forces high) or turbulent flow (inertial forces high). From earlier we saw how we could calculate 

whether a particular flow in a pipe is laminar or turbulent using the Reynolds number. 

   
   

 
  

(ρ = density, u = velocity, μ = viscosity, d = pipe diameter) 

Laminar flow: Re < 2000 

Transitional flow: 2000 < Re < 4000 

Turbulent flow: Re > 4000 

 

                             
 

If we only have laminar flow the profile is parabolic – as proved in earlier lectures – as only the 

first part of the boundary layer growth diagram is used. So we get the top diagram in the above 

figure. 

If turbulent (or transitional), both the laminar and the turbulent (transitional) zones of the 

boundary layer growth diagram are used. The growth of the velocity profile is thus like the 

bottom diagram in the above figure. Once the boundary layer has reached the centre of the pipe 

the flow is said to be fully developed. (Note that at this point the whole of the fluid is now 

affected by the boundary friction.) The length of pipe before fully developed flow is achieved is 

different for the two types of flow. The length is known as the entry length. 

Laminar flow entry length 120 diameter 

Turbulent flow entry length 60 diameter 

 

Example 3.  Lubricating Oil at a velocity of 1 m/s (average) flows through a pipe of 100 mm ID. 

Determine whether the flow is laminar or turbulent. Also determine the friction factor and the 

pressure drop over 10 m length. What should be the velocity for the flow to turn turbulent? 

Density = 930 kg/m
3
 . Dynamic viscosity μ= 0.1 Ns/m

2
 (as N/m

2
 is call Pascal, μ can be also 

expressed as Pa.s). 

 

    
   

 
 = 
         

     
 =930, so the flow is laminar; 
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Friction factor, f = 64/930 = 0.06882 

 

   
    

 

   
 = (64/930) × 10 × 1

2
/(2 × 9.81 × 0.1) = 0.351 m head of oil. 

      or                                           ∆P = 0.351 × 0.93 × 9810 = 3200 N/m
2
 

At transition Re = 2000 (can be taken as 2300 also) Using (15) (Hagen-Poiseuille eqn.) 

  

   
         

  
 = 
           

    
 = 3200 N/m

2
. (same as by the other equation) 

 

To determine velocity on critical condition 

                                                                                                                                                            

                                                                                             2300 = 4 m × 0.1 × 930/0.1 

                 um= 2.47 m/s. 

 

L). VELOCITY DISTRIBUTION AND FRICTION FACTOR FOR TURBULENT FLOW 

IN PIPES. 

 

The velocity profile and relation between the mean and maximum velocity are different in the 

two types of flow. In laminar flow the velocity profile is parabolic and the mean velocity is half 

of the maximum velocity. Such a relation is more complex in turbulent flow. For example one 

such available relation is given by; 

 

                                                
  

    
 

 

      √ 
                                  22 

The friction factor f is a complex function of Reynolds number. A sample velocity variation is 

given in equation (37). 

                                          (      √ )       √      ( (   )⁄ )           23 

For higher values of f the velocity variation will be well rounded at the centre compared to low 

values of f. A new reference velocity called shear velocity is defined as below. 

 

                                                  √
    

 
                                              24           

    Several other correlation using the reference velocity are listed below.  

 

                                                  
 

  
         

   

 
                           25 

 

                                                   
 

  
       

(   )

 
                          26 

Where   is the roughness dimension. The mean velocity um is obtained for smooth and rough 

pipes as  

 

                                                    
  

  
         

(   )  

 
                 27 

 

                                 and               
  

  
         

 

 
                        28 
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The laminar sub-layer thickness is used for defining smooth pipe. The thickness of this layer is 

given by; 

 

                                                                 
 ⁄                               29 

In the case of turbulent show the wall shear force is given by the following equation. 

 

                                                                  
 

 
 
   

 

 
                          30 

 

 

Similar to velocity profile, several correlations are available for friction factor. These 

correlations together with correlations for velocity profile are useful in numerical methods of 

solution. The friction factor for very smooth pipes can be calculated by assuming one seventh 

power law leading to, 

 

                                                  f = 0.316/Re
0.

25      for Re < 2 × 10
4
          (31) 

For all ranges either of the following relations can be used 

 

                                               f = 0.0032 + (0.221/Re
0.237

)                            (32) 

 

                                               √ ⁄  = 1.8 log Re – 1.5186                              33 

 

For rough pipes of radius R  

                                                     √ ⁄      
 

 
                                   34 

Charts connecting f, Re and   /D are also available and can be used without appreciable error. As 

in laminar flow the frictional loss of head is given by  

 

                                                      
    

 

    
⁄                                         35 

Also 

                                                          
   

   
  

  
                                              36 

The value of f is to be determined using the approximate relations or the chart.  

 

M). MINOR LOSSES IN PIPE FLOW. 

 

Additional frictional losses occur at pipe entry, valves and fittings, sudden decrease or increase 

in flow area or where direction of flow changes. The frictional losses other than pipe friction are 

called minor losses. In a pipe system design, it is necessary to take into account all such losses. 

These losses are generally expressed as                                                                                

   
   ⁄  

Where C is constant, the value of which will depend on the situation and is called the loss 

coefficient. The expression is applicable both for laminar and turbulent flows. 

(i) Loss of head at entrance: At the entrance from the reservoir into the pipe, losses take place 

due to the turbulence created downstream of the entrance. Three types of entrances are known. 
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(a) Bell mouthed: This is a smooth entrance and turbulence is suppressed to a great extent and C 

= 0.04 for this situation. 

(b) Square edged entrance: Though it is desirable to provide a bell mouthed entrance it will not 

be always practicable. Square edged entrance is used more popularly. The loss coefficient, C = 

0.5 in this case. 

(c) Reentrant inlet: The pipe may sometimes protrude from the wall into the liquid. Such an 

arrangement is called reentrant inlet. The loss coefficient in this case is about 0.8. 

 

 

 

 

 

 

 

 

 

                                       
                                    Bell mouthed                  Square edge               Re-entrant 

                                                         Figure 6 Types of entrance 

(ii) Loss of head at submerged discharge: When a pipe with submerged outlet discharges into 

a liquid which is still (not moving) whole of the dynamic head u
2
/2g will be lost. The loss 

coefficient is 1.0. The discharge from reaction turbines into the tail race water is an example. The 

loss is reduced by providing a diverging pipe to reduce the exit velocity. 

(iii) Sudden contraction: When the pipe section is suddenly reduced, loss coefficient depends 

on the diameter ratio. The value is 0.33 for D2/D1 = 0.5. The values are generally available in a 

tabular statement connecting D2/D1 and loss coefficient. Gradual contraction will reduce the loss. 

For gradual contraction it varies with the angle of the transition section from 0.05 to 0.08 for 

angles of 10° to 60°. 

(iv) Sudden expansion: Here the sudden expansion creates pockets of eddying turbulence 

leading to losses. The loss of head hf  is given by 

                                                            Loss of head = (u1 – u2)
2
 / 2g.                            (37)  

Where u1 and u2 are the velocities in the smaller and larger sections. Gradual expansion will 

reduce the losses. 

(v) Valves and fittings: Losses in flow through valves and fittings is expressed in terms of an 

equivalent length of straight pipe. For gate valves L = 8D, and for globe valves it is 340 D. For 

90° bends it is about 30 D. 

 

N). EXPRESSION FOR THE LOSS OF HEAD AT SUDDEN EXPANSION IN PIPE 

FLOW. 

The situation is shown in Fig 7. 
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Using Bernoulli equation and denoting the ideal pressure at section 2 as P2 (without losses), 

datum remaining unaltered, 

 

                                          
  

  
 

  

  
  

  
 

  
 
  
 

  
  or  

  

 
 
  

 
  

  
 

 
 
  
 

 
                  ( 1) 

 

                              
                                                           Figure 7 Sudden Expansion 

 

Applying conservation of momentum principle to the fluid between section 1 and 2, and 

denoting the actual pressure at section 2 as P2, The pressure forces are (here the pressure on the 

annular section of fluid at 1 is assumed as P1) 

                                                          (        
   )  

The change in momentum is given by 

                                                                          (                ) 
noting A1 u1 = A2 u2, replacing A1 u1 by A2 u2 and equating the net forces on the element to the 

momentum change, 

 

                                                        
    =      

           

Dividing by ρ and A2 all-through 

 

                                        
  

 
  

  
 

 
    

        or   
  

 

 
  

  

 
  (  

       )           (2) 

Subtracting on either side of equations 1 and 2 (ideal and real)  
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       )  
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       ) 

Multiplying both sides by 2 

 

                                       
 (     

 )

 
    

     
      

         = (      )
  

Dividing the both sides by g and simplifying 

 

                                        
     

 

  
  

(       )
 

  
   but,  

     
 

  
      (head loss),  
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(       )

 

  
 

 

 

 

O). LOSSES IN ELBOWS, BENDS AND OTHER PIPE FITTINGS. 

Fittings like valves, elbows etc. introduce frictional losses either by obstruction or due to 

secondary flows. The losses may be accounted for by a term equivalent length which will depend 

on the type of fitting or in terms of (u
2
/2g) or dynamic head. In the case of bends, the loss is due 

to the variation of centrifugal force along different stream lines which causes secondary flows. In 

large bends fitting curved vanes will reduce the loss. The loss will vary with radius of the bend. 

Globe valves are poorer compared to gate valves with regard to pressure drop. 

 

 

 

 


