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2.15. Frequency of Under Damped Forced Vibrations 
Consider a system consisting of spring, mass and damper as shown in Fig. 22. 

   Let the system is acted upon by an external periodic (i.e. simple harmonic) 

disturbing force, 

                     Fx F cos .t 

where            F = Static force, and 

                        = Angular velocity of the periodic disturbing force. 

When the system is constrained to move in vertical guides, it has only one degree 

of freedom. Let at sometime 

t, the mass is displaced downwards through a distance x from its mean position. 

Using the symbols as discussed in the previous article, the equation of motion may 

be written as 

                          m 
   

   
 = -c × 

  

  
 – s.x + Fcos t 

or                  m 
   

   
 + c× 

  

  
 + s.x = Fcos t 

This equation of motion may be solved either by differential equation method or by 

graphical method as discussed below: 

 

1. Differential equation method 

The equation (i) is a differential equation of the second degree whose right hand 

side is some function in t. The solution of such type of differential equation 

consists of two parts; one part is the complementary function and the second is 

particular integral. Therefore the solution may be written as 

                              x = x1 + x2 

where                   x1 = Complementary function, and 

                            x2 = Particular integral. 

The complementary function is same as discussed in the previous article, i.e. 

                x1 = c      cos (     ) 

                x2 =B1sin.t + B2cos.t 

where C and  are constants. Let us now find the value of particular integral as 

discussed below: 

Let the particular integral of equation (i) is given by 

              x2 B1 sin .t B2 cos.t . . . (where B1 and B2 are constants) 
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                                            B2 = 
      

   
 × B1                                                                                  ……(V) 

                                                       Substituting the value of B2 in equation iv 

                              C.  .B1 + 
                 

   
    B1 = F1                                                   
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In actual practice, the value of the complementary function x1 at any time t is 

much smaller as compared to particular integral x2. Therefore, the displacement x, 

at any time t, is given by the particular integral x2 only. 
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4. At resonance       Therefore the angular speed at which the resonance 

occurs is                      √
 

 
 rad/s 

And                      Xmax  = X0 × 
 

   
             …[from eqt. ix] 
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2.16. Magnification Factor or Dynamic Magnifier 
It is the ratio of maximum displacement of the forced vibration (xmax ) to the 

deflection due to the static force F(xo). We have proved in the previous article 

that the maximum displacement or the amplitude of forced vibration, 

 

                        
                                Fig.22 Relationship between magnification factor  

                        and phase angle for different values of     . 
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∴Magnification factor or dynamic magnifier, 

                     
The magnification factor or dynamic magnifier gives the factor by which the static 

deflection produced by a force F (i.e. xo) must be multiplied in order to obtain the 

maximum amplitude of the forced vibration (i.e. xmax) by the harmonic force F cos 

 .t   

          ∴xmax xo ×D 
Fig. 22 shows the relationship between the magnification factor (D) and phase 

angle  for different value of      and for values of damping factor c/cc = 0.1, 

0.2 and 0.5.

Notes: 1. If there is no damping (i.e. if the vibration is undamped), then c = 0. In 

that case, magnification factor, 

                            
Example 3.0. A single cylinder vertical petrol engine of total mass 300 kg is 

mounted upon a steel chassis frame and causes a vertical static deflection of 2 mm. 

The reciprocating parts of the engine has a mass of 20 kg and move through a 

vertical stroke of 150 mm with simple harmonic motion. A dashpot is provided 

whose damping resistance is directly proportional to the and amounts to 1.5 kN 

per metre per second. Considering that the steady state of vibration is reached; 

determine: 1. the amplitude of forced vibrations, when the driving shaft of the 
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engine rotates at 480 r.p.m., and 2. the speed of the driving shaft at which 

resonance will occur. 

Solution: Given. m = 300 kg; = 2 mm = 2 × 10–3 m; m1 = 20 kg; l = 150 mm 

= 0.15 m; c = 1.5 kN /m/s =1500 N/m/s; N = 480 r.p.m. or  2 480 / 60 = 50.3 

rad/s 

                  

 
 
 

Example 3.1. A mass of 10 kg is suspended from one end of a helical spring, the 

other end being fixed. The stiffness of the spring is 10 N/mm. The viscous damping 

causes the amplitude to decrease to one-tenth of the initial value in four complete 

oscillations. If a periodic force of 150 cos 50 t N is applied at the mass in the 
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vertical direction, find the amplitude of the forced vibrations. What is its value of 

resonance? 
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Example 3.2. A body of mass 20 kg is suspended from a spring which deflects 15 

mm under this load. Calculate the frequency of free vibrations and verify that a 

viscous damping force amounting to approximately 1000 N at a speed of 1 m/s is 

just-sufficient to make the motion aperiodic. If when damped to this extent, the 

body is subjected to a disturbing force with a maximum value of 125 N making 8 

cycles/s, find the amplitude of the ultimate motion. 

Solution. Given: m = 20 kg;  = 15 mm = 0.015 m ; c = 1000 N/m/s ; F = 125 N; 

f = 8 cycles/s 

Frequency of free vibrations 

We know that frequency of free vibrations, 
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This means that the viscous damping force is 1023 N at a speed of 1 m/s. Therefore 

a viscous damping force amounting to approximately 1000 N at a speed of 1 m/s is 

just sufficient to make the motion aperiodic. Ans. 

 

 

 
Example 3.3 A machine part of mass 2 kg vibrates in a viscous medium. 

Determine the damping coefficient when a harmonic exciting force of 25 N results 

in a resonant amplitude of 

12.5 mm with a period of 0.2 second. If the system is excited by a harmonic force 

of frequency 

4 Hz what will be the percentage increase in the amplitude of vibration when 

damper is removed as compared with that with damping. 

Solution. Given: m = 2 kg; F = 25 N; Resonant xmax = 12.5 mm = 0.0125 m; 

tp = 0.2 s ; f = 4 Hz 

Damping coefficient 

Let                 c = Damping coefficient in N/m/s. 

We know that natural circular frequency of the exciting force, 

 n 2/tp 2/ 0.2 = 31.42 rad/s 

We also know that the maximum amplitude of vibration at resonance (xmax ), 

                    0.0125 = 
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Percentage increase in amplitude 

Since the system is excited by a harmonic force of frequency ( f ) = 4 Hz, therefore 

corresponding circular frequency 

                

 
 

2.17. Vibration Isolation and Transmissibility 
A little consideration will show that when an unbalanced machine is installed on 

the foundation, it produces vibration in the foundation. In order to prevent these 

vibrations or to minimize the transmission of forces to the foundation, the 

machines are mounted on springs and dampers or on some vibration isolating 

material, as shown in Fig.23. The arrangement is assumed to have one degree of 

freedom, i.e. it can move up and down only. It may be noted that when a periodic 

(i.e. simple harmonic) disturbing force F cos .t is applied to a machine of mass m 

supported by a spring of stiffness s, then the force is transmitted by means of the 

spring and the damper or dashpot to the fixed support or foundation. The ratio of 

the force transmitted (FT) to the force applied (F) is known as the isolation factor 

or transmissibility ratio of the spring support. 
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                                                        Fig. 23. Vibration isolation. 

We have discussed above that the force transmitted to the foundation consists of 

the following two forces: 

1. Spring force or elastic force which is equal to s. xmax, and 

2. Damping force which is equal to c.xmax. 
Since these two forces are perpendicular to one another, as shown in Fig23., 

therefore the force transmitted, 
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                   We have seen in Art. 2.18 that the magnification factor, 

 
From above, we see that when    1,   is negative. This means that there is a 

phase difference of 180° between the transmitted force and the disturbing force (F 

cos.t). The value of    must be greater than 2 if  is to be less than 1 and it is 

the numerical value of  , independent of any phase difference between the forces 

that may exist which is important. It is therefore more convenient to use equation 

(ii) in the following form, i.e.        
 

           

 

Fig.24 is the graph for different values of damping factor c/cc to show the 

variation of transmissibility ratio ( ) against the ratio      . 1. When      2, 

then all the curves pass through the point  = 1 for all values of damping factor 

c/cc 
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                                Fig.24. Graph showing the variation of transmissibility ratio. 

 

2. When     2, then  > 1 for all values of damping factor c/cc. This means 

that the force transmitted to the foundation through elastic support is greater than 

the force applied. 

3. When      2, then  < 1 for all values of damping factor c/cc. This shows 

that the force transmitted through elastic support is less than the applied force. 

Thus vibration isolation is possible only in the range of    2. 

We also see from the curves in Fig.24 that the damping is detrimental beyond 

   2 and advantageous only in the region    2. It is thus concluded that 

for the vibration isolation, dampers need not to be provided but in order to limit 

resonance amplitude, stops may be provided. 
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                                       EXERCISES (A) 
1. A shaft of 100 mm diameter and 1 metre long is fixed at one end and other end 

carries a flywheel of mass 1 tonne. Taking Young’s modulus for the shaft material 

as 200 GN/m2, find the natural frequency of longitudinal and transverse vibrations. 

[Ans. 200 Hz; 8.6 Hz] 

2. A beam of length 10 m carries two loads of mass 200 kg at distances of 3 m 

from each end together with a central load of mass 1000 kg. Calculate the 

frequency of transverse vibrations. Neglect the mass of the beam and take I = 109 

mm4 and E = 205×103 N/mm2. [Ans. 13.8 Hz] 

3. A steel bar 25 mm wide and 50 mm deep is freely supported at two points 1 m 

apart and carries a mass of 200 kg in the middle of the bar. Neglecting the mass of 

the bar, find the frequency of transverse vibration. 

If an additional mass of 200 kg is distributed uniformly over the length of the shaft, 

what will be the frequency of vibration? Take E = 200 GN/m2. [Ans. 17.8 Hz; 

14.6 Hz] 
4. A shaft 1.5 m long is supported in flexible bearings at the ends and carries two 

wheels each of 50 kg mass. One wheel is situated at the centre of the shaft and the 

other at a distance of 0.4 m from the centre towards right. The shaft is hollow of 

external diameter 75 mm and inner diameter 37.5 mm. The density of the shaft 

material is 8000 kg/m3. The Young’s modulus for the shaft material is 

200 GN/m2. Find the frequency of transverse vibration. [Ans. 33.2 Hz] 

5. A shaft of diameter 10 mm carries at its centre a mass of 12 kg. It is supported 

by two short bearings, the centre distance of which is 400 mm. Find the whirling 

speed: 1.neglecting the mass of the shaft, and 2.taking the mass of the shaft also 

into consideration. The density of shaft material is 7500 kg/m3. [Ans. 748 r.p.m.; 

744 r.p.m.] 
6. A shaft 180 mm diameter is supported in two bearings 2.5 metres apart. It 

carries three discs of mass 250 kg, 500 kg and 200 kg at 0.6 m, 1.5 m and 2 m from 

the left hand. Assuming the mass of the shaft 190 kg/m, determine the critical 

speed of the shaft. Young’s modulus for the material of the shaft is 211 GN/m2. 

[Ans. 18.8 r.p.m.] 

7. A shaft 12.5 mm diameter rotates in long bearings and a disc of mass 16 kg is 

secured to a shaft at the middle of its length. The span of the shaft between the 

bearing is 0.5 m. The mass centre of the disc is 0.5 mm from the axis of the shaft. 

Neglecting the mass of the shaft and taking E = 200 

GN/m2, find: 1 critical speed of rotation in r.p.m., and 2. the range of speed over 

which the stress in the shaft due to bending will not exceed 120 MN/m2. Take the 
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static deflection of the shaft for a beam fixed at both ends, i.e.  =
   

      
  [Ans. 

1450 r.p.m. ; 1184 to 2050 r.p.m.] 
8. A vertical shaft 25 mm diameter and 0.75 m long is mounted in long bearings 

and carries a pulley of mass 10 kg midway between the bearings. The centre of 

pulley is 0.5 mm from the axis of the shaft. Find (a) the whirling speed, and (b) the 

bending stress in the shaft, when it is rotating at 1700 r.p.m. Neglect the mass of 

the shaft and E = 200 GN/m2. [Ans. 3996 r.p.m; 12.1 MN/m2] 

9. A shaft 12 mm in diameter and 600 mm long between long bearings carries a 

central mass of 4 kg. 

If the centre of gravity of the mass is 0.2 mm from the axis of the shaft, compute 

the maximum flexural stress in the shaft when it is running at 90 per cent of its 

critical speed. The value of 

Young’s modulus of the material of the shaft is 200 GN/m2. [Ans. 14.8 kN/m2] 

10. A vibrating system consists of a mass of 8 kg, spring of stiffness 5.6 N/mm and 

a dashpot of damping coefficient of 40 N/m/s. Find (a) damping factor, (b) 

logarithmic decrement, and (c) ratio of the two consecutive amplitudes. [Ans. 

0.094; 0.6; 1.82] 
11. A body of mass of 50 kg is supported by an elastic structure of stiffness 10 

kN/m. The motion of the body is controlled by a dashpot such that the amplitude of 

vibration decreases to one-tenth of its original value after two complete vibrations. 

Determine: 1. the damping force at 1 m/s; 2. The damping ratio, and 3. the natural 

frequency of vibration. [Ans. 252 N/m/s; 0.178; 2.214 Hz] 

12. A mass of 85 kg is supported on springs which deflect 18 mm under the weight 

of the mass. The vibrations of the mass are constrained to be linear and vertical and 

are damped by a dashpot which reduces the amplitude to one quarter of its initial 

value in two complete oscillations. Find: 1.The magnitude of the damping force at 

unit speed, and 2. the periodic time of damped vibration. [Ans. 435 N/m/s; 0.27 s] 

 

 

                                       EXERCISES (B) 
1. What are the causes and effects of vibrations? 

2. Define, in short, free vibrations, forced vibrations and damped vibrations. 

3. Discuss briefly with neat sketches the longitudinal, transverse and torsional free 

vibrations. 

4. Derive an expression for the natural frequency of free transverse and 

longitudinal vibrations by equilibrium method. 

5. Discuss the effect of inertia of the shaft in longitudinal and transverse vibrations. 
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6. Deduce an expression for the natural frequency of free transverse vibrations for 

a simply supported shaft carrying uniformly distributed mass of m kg per unit 

length. 

7. Deduce an expression for the natural frequency of free transverse vibrations for 

a beam fixed at both ends and carrying a uniformly distributed mass of m kg per 

unit length. 

8. Establish an expression for the natural frequency of free transverse vibrations for 

a simply supported beam carrying a number of point loads, by (a) Energy method ; 

and (b) Dunkerley’s method. 

9. Explain the term ‘whirling speed’ or ‘critical speed’ of a shaft. Prove that the 

whirling speed for a rotating shaft is the same as the frequency of natural 

transverse vibration. 

10. Derive the differential equation characterising the motion of an oscillation 

system subject to viscous damping and no periodic external force. Assuming the 

solution to the equation, find the frequency of oscillation of the system. 

 Explain the term 'Logarithmic decrement' as applied to damped vibrations. 

11. Establish an expression for the amplitude of forced vibrations. 

12. Explain the term ‘dynamic magnifier’. 

13. What do you understand by transmissibility? 
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            TORSIONAL VIBRATION 
3.1 Introduction 
We have already discussed in the previous chapter that when the particles of a 

shaft or disc move in a circle about the axis of a shaft, then the vibrations are 

known as torsional vibrations. In this case, the shaft is twisted and untwisted 

alternately and torsional shear stresses are induced in the shaft. In this chapter, we 

shall now discuss the frequency of torsional vibrations of various systems. 

 

 Natural Frequency of Free Torsional Vibrations 
Consider a shaft of negligible mass whose one end is fixed and the other end 

carrying a disc as shown in Fig. 25 

Let                        = Angular displacement of the shaft  

                                   from mean position after time t in radians, 

                           m = Mass of disc in kg, 

                           I = Mass moment of inertia of disc in kg-m
2
 = m.k

2
, 

                           k = Radius of gyration in metres, 

                          q = Torsional stiffness of the shaft in N-m. 

   

 
                                                                                       Fig 25. Natural frequency of  

                                                                                             free torsional vibrations. 

                       
   

   
 = 

 

 
     = 0                                                               ….. (iii) 

       The fundamental equation of the simple harmonic motion is  

                            
   

   
 +   . X = 0                                                                ….. (iv) 

        Comparing equations (iii) and (iv),      √
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  ∴         Time period, tp = 
  

 
 =2√

 

 
   

              And natural frequency fn = 
 

  
 = 

 

  
 √

 

 
 

                 

 
 

Example 3.1. A shaft of 100 mm diameter and 1 metre long has one of its end fixed 

and the other end carries a disc of mass 500 kg at a radius of gyration of 450 mm. 

The modulus of rigidity for the shaft material is 80 GN/m
2
. Determine the 

frequency of torsional vibrations. 

Solution. Given: d = 100 mm = 0.1 m; l = 1 m; m = 500 kg; k = 450 mm = 0.45m;     

C = 80 GN/m
2
 = 80 × 109 N/m

2
 

We know that polar moment of inertia of the shaft, 
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Example 3.2. A flywheel is mounted on a vertical shaft as shown in Fig 24.2. The 

both ends of a shaft are fixed and its diameter is 50 mm. The flywheel has a mass 

of 500 kg and its radius of gyration is 0.5 m. Find the natural frequency of 

torsional vibrations, if the modulus of rigidity for the shaft material is 80 GN/m
2
. 

Solution. Given: d = 50 mm = 0.05 m; m = 500 kg; k = 0.5m; G = 80 GN/m
2
 

= 84 × 109 N/m
2
 

We know that polar moment of inertia of the shaft, 

                                                                         
                                                                                    Fig. 26 

       
                  

 

∴Natural frequency of torsional vibration, 
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fn = 
 

  
 = √

 

 
 =  

 

  
√

       

   
 = 

    

  
 = 5.32 

 
3.2   Effect of Inertia of the Constraint on Torsional Vibrations 
Consider a constraint i.e. shaft whose one end is fixed and the other end free, as 

shown in Fig.26. 

Let                         = Angular velocity of free end, 

                             m = Mass of constraint for unit length, 

                               l = Length of constraint, 

                           mC = Total mass of constraint = m.l, 

                              k = Radius of gyration of constraint, 

                             IC = Total mass moment of inertia of constraint 

                                 = mC.k
2
 = m.l.k

2
. 

Consider a small element at a distance x from the fixed end and of length x. 

Therefore, Mass moment of inertia of the element  

 
                                                                                         Fig 27.  Effect of inertia of the constraint on torsional vibrations. 

 
 

S  

If a mass where mass moment of inertia is equal to IC/3 is placed at the free end 
and the constant is assumed to be of negligible mass, then the 
 Total Kinetic Energy of the constant 

                                                                 
 

 
    

  

 
           ….[same as equation (i)] 

  
 



80 
 

 

3.3. Critical or Whirling Speed of a Shaft 
In actual practice, a rotating shaft carries different mountings and accessories in the 

form of gears, pulleys, etc. When the gears or pulleys are put on the shaft, the 

centre of gravity of the pulley or gear does not coincide with the centre line of the 

bearings or with the axis of the shaft, when the shaft is stationary. This means that 

the centre of gravity of the pulley or gear is at a certain distance from the axis of 

rotation and due to this, the shaft is subjected to centrifugal force. 

This force will bent the shaft which will further increase the distance of centre of 

gravity of the pulley or gear from the axis of rotation. This correspondingly 

increases the value of centrifugal force, which further increases the distance of 

centre of gravity from the axis of rotation. This effect is cumulative and ultimately 

the shaft fails. The bending of shaft not only depends upon the value of eccentricity 

(distance between centre of gravity of the pulley and the axis of rotation) but also 

depends upon the speed at which the shaft rotates. 

The shaft continues to deflect infinitely from the axis of rotation at a critical speed 

called whirling speed. 

The speed at which the shaft runs so that the additional deflection of the shaft 

from the axis of rotation becomes infinite, is known as critical or whirling 

speed. 

 

                       

 
 

                                     Fig 28      Critical or whirling speed of a shaft. 

 

Consider a shaft of negligible mass carrying a rotor, as shown in Fig.28 (a). The 

point O is on the shaft axis and G is the centre of gravity of the rotor. When the 

shaft is stationary, the centre line of the bearing and the axis of the shaft coincides. 

Fig. 28 (b) shows the shaft when rotating about the axis of rotation at a uniform 

speed of rad/s. 
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Let                     m = Mass of the rotor, 

                           e = Initial distance of centre of gravity of the rotor from the centre 

               line of the bearing or shaft axis, when the shaft is stationary, 

 

                    y = Additional deflection of centre of gravity of the rotor when 

                          the shaft starts rotating at rad/s, and 

                     s = Stiffness of the shaft i.e. the load required per unit deflection 

                           of the shaft. 

Since the shaft is rotating at rad/s, therefore centrifugal force acting radially 

outwards through G causing the shaft to deflect is given by 

                 FC m.

( y e) 

The shaft behaves like a spring. Therefore the force resisting the deflection, 

                   Y = s.y 

For the equilibrium position,           

                                                    m.
2
 ( y e) s.y 

                                              or m.
2
.y m.

2
.e s.y  or y (s −m.

2
 ) m.

2
.e 

∴                                             y=
      

       = 
    
 

 
   

                                 …… (i) 

     

Recall,                                                 = √
 

 
  or   y = 

  

           
     …{ from equation (i)} 

If      the deflection is negative but if n    the defection is positive. 

                                                             y =  
    

           
 

Divide both the numerator and the denominator by    

                                                           y=   
 

 
  
 

     
                (putting   =c) 

                                                               y=   
 

 
  
 

     
            

 When n = c, the value of y becomes infinite. Therefore c is the critical or 

whirling speed.  

 Critical or whirling speed, c = n = √
 

 
  

                                                       c = √
 

 
   HZ 

A little consideration will show that when n, the value of y will be negative 

and the shaft deflects is the opposite direction as shown dotted in Fig 28 (b). 
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In order to have the value of y always positive, both plus and minus signs are 

taken.             

 

where                                    = Static deflection of the shaft in metres. 

Hence the critical or whirling speed is the same as the natural frequency of 

transverse vibration but its unit will be revolutions per second. 

  

Notes: 1. When the centre of gravity of the rotor lies between the centre line of the 

shaft and the centre line of the bearing, e is taken negative. On the other hand, if 

the centre of gravity of the rotor does not lie between the centre line of the shaft 

and the centre line of the bearing (as in the above article) the value of e is taken 

positive. 

2. To determine the critical speed of a shaft which may be subjected to point loads, 

uniformly distributed load or combination of both, find the frequency of transverse 

vibration which is equal to critical speed of a shaft in r.p.s. The Dunkerley’s 

method may be used for calculating the frequency. 

3. A shaft supported is short bearings (or ball bearings) is assumed to be a simply 

supported shaft while the shaft supported in long bearings (or journal bearings) is 

assumed to have both ends fixed. 

A shaft is said to whirl when it rotates in a bowed condition between the bearings 

under certain conditions if the speed of rotation of a shaft is gradually increased 

from zero, it will be seen that approaching a particular speed the shaft will begin to 

bow, until the bowing is maximum at that speed. At the further increase of the 

speed, the bow disappears. 

The speed at which the shaft runs, so that the bowed condition (deflection) is a 

maximum is known as critical or whirling speed; and they represent a dangerous 
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condition which needs to be avoided. In spite of careful balancing since whirling 

cannot be avoided then, the critical speed needs to be identified. The equipment 

employing lengths of shafting and high speed are particularly prone to the problem. 

Turbine rotors and shafts are two examples. 

The need for whirling originate in the need to provide centripetal acceleration 

for a mass to rotate in a circular path. This will arise when the centre of 

gravity of a rotating mass does not coincide with the axis of the rotation. For a 

shaft this may be due to:  

(i) Imperfect machining, 
(ii) Deflection due to the weight of shaft, 
(iii) Deflection due to a mass attached to the shaft etc. 

Whatsoever the cause might be, it is the strength of the shaft material which must 

provide the centripetal force to give the required acceleration. At the critical or 

whirling speeds, the elastic stiffness of the shaft is just able to provide the 

necessary centripetal force and a condition of unstable equilibrium is reached 

where failure may eventually result.      
 

Example 3.3. Calculate the whirling speed of a shaft 20 mm diameter and 0.6 m 

long carrying a mass of 1 kg at its mid-point. The density of the shaft material is 40 

Mg/m
3
, and Young’s modulus is 200 GN/m

2
. Assume the shaft to be freely 

supported. 

Solution. Given: d = 20 mm = 0.02 m; l = 0.6 m; m1 = 1 kg ; = 40 Mg/m
3
 

= 40 × 106 g/m
3
 = 40 × 103 kg/m

3
; E = 200 GN/m

2
 = 200 × 109 N/m

2 

  

 
                                                                                                                                               Fig. 29 
Since the density of shaft material is 40 × 10

3
 kg/m

3
, therefore mass of the shaft 

per metre length, 
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Example 3.4. A shaft 1.5 m long, supported in flexible bearings at the ends carries 

two wheels each of 50 kg mass. One wheel is situated at the centre of the shaft and 

the other at a distance of 375 mm from the centre towards left. The shaft is hollow 

of external diameter 75 mm and internal diameter 40 mm. The density of the shaft 

material is 7700 kg/m3 and its modulus of elasticity is 200 GN/m2. Find the lowest 

whirling speed of the shaft, taking into account the mass of the shaft. 

Solution.     Given: l = 1.5 m; m1 = m2 = 50 kg; d1 = 75 mm = 0.075 m; d2 = 40 

mm = 0.04 m; = 7700 kg/m
3
; E = 200 GN/m

2
 = 200 × 109 N/m

2 

  

                                                  
 

                                                                  Fig 30 
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We know that moment of inertia of the shaft, 
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Example 3.5. A vertical shaft of 5 mm diameter is 200 mm long and is supported 

in long bearings at its ends. A disc of mass 50 kg is attached to the centre of the 

shaft. Neglecting any increase in stiffness due to the attachment of the disc to the 

shaft, find the critical speed of rotation and the maximum bending stress when the 

shaft is rotating at 75% of the critical speed. The centre of the disc is 0.25 mm 

from the geometric axis of the shaft. E = 200 GN/m
2
. 

 

Solution.    Given: d = 5 mm = 0.005 m; l = 200 mm = 0.2 m; m = 50 kg; e = 0.25 

mm = 0.25 × 10
–3

 m ; E = 200 GN/m
2
 = 200 × 109 N/m

2
 

Critical speed of rotation 

We know that moment of inertia of the shaft, 
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                Maximum bending stress 

Let 𝞼= Maximum bending stress in N/m2, and 

                        N = Speed of the shaft = 75% of critical speed = 0.75 Nc . . . (Given) 

When the shaft starts rotating, the additional dynamic load (W1) to which the shaft 

is subjected, may be obtained by using the bending equation, 

                      
 

 
 = 

 

 
  or M=  

   

  
  

 
 

  0.32 10
−3

 / 3.327 10
−12

 0.0962 10
9
 N/m

2
   ….( Taking + ve sign ) 

= 96.2 × 10
6
 N/m

2
 = 96.2 MN/m

2
 Ans. 

  

Example 3.6. A vertical steel shaft 15 mm diameter is held in long bearings 1 

metre apart and carries at its middle a disc of mass 15 kg. The eccentricity of the 

centre of gravity of the disc from the centre of the rotor is 0.30 mm. The modulus of 

elasticity for the shaft material is 200 GN/m
2 
and the permissible stress is 

70 MN/m
2
. Determine: 1. The critical speed of the shaft and 2. The range of speed 

over which it is unsafe to run the shaft. Neglect the mass of the shaft. 

 

 [For a shaft with fixed end carrying a concentrated load (W) at the centre assume 
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 = 
   

     
 and M=

   

 
, where, and M are maximum deflection and bending 

moment respectively]. 

 

Solution. Given: d = 15 mm = 0.015 m; l = 1 m; m = 15 kg; e = 0.3 mm = 0.3 × 

10
–3

 m; E = 200 GN/m
2 
= 200 × 10

9
 N/m

2
; 𝞼= 70 MN/m

2
 = 70 × 10

6
 N/m

2
 

We know that moment of inertia of the shaft, 

                                                I = 
    

  
  

 

  
           

                                                             = 2.5×10
-9

 m
4
 

 

1. Critical speed of the shaft 

Since the shaft is held in long bearings, therefore it is assumed to be fixed at both 

ends. We know that the static deflection at the centre of shaft, 

                                            = 
   

     
  

          

                      

                                                             = 1.5×10
-3

 m                          ( W = mg) 
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Or                    N = 
  

√    
    

  

√    
 

 

                         
  

√    
  

     

√    
 

                                               = 7.18 r.p.m 
 

And                      
  

√    
  

     

√    
 

                                                 = 843 r.p.m 
Hence     range of speed is from 718 r.p.m to 843 r.p.m 
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3.4 Balancing of Rotating Masses 
 
3.4.1 Introduction 
The high speed of engines and other machines is a common phenomenon now-a-

days. It is, therefore, very essential that all the rotating and reciprocating parts 

should be completely balanced as far as possible. If these parts are not properly 

balanced, the dynamic forces are set up. These forces not only increase the loads 

on bearings and stresses in the various members, but also produce unpleasant and 

even dangerous vibrations. In this chapter we shall discuss the balancing of 

unbalanced forces caused by rotating masses, in order to minimize pressure on the 

main bearings when an engine is running. 

 

3.4.2. Balancing of Rotating Masses 
We have already discussed, that whenever a certain mass is attached to a rotating 

shaft, it exerts some centrifugal force, whose effect is to bend the shaft and to 

produce vibrations in it. In order to prevent the effect of centrifugal force, another 

mass is attached to the opposite side of the shaft, at such a position so as to balance 

the effect of the centrifugal force of the first mass. This is done in such a way that 

the centrifugal force of both the masses are made to be equal and opposite. The 

process of providing the second mass in order to counteract the effect of the 

centrifugal force of the first mass, is called balancing of rotating masses.  

 

3.4.3 Balancing of a Single Rotating Mass By a Single Mass Rotating in    
the Same Plane 

Consider a disturbing mass m1 attached to a shaft rotating at rad/s as shown in 

Fig. 31. 

Let r1 be the radius of rotation of the mass m1 (i.e. distance between the axis of 

rotation of the shaft and the centre of gravity of the mass m1). 

We know that the centrifugal force exerted by the mass m1 on the shaft, 

FCl  =  m1.
2
. r1 . . . (i)

This centrifugal force acts radially outwards and thus produces bending moment on 

the shaft. In order to counteract the effect of this force, a balancing mass (m2) may 

be attached in the same plane of rotation as that of disturbing mass (m1) such that 

the centrifugal forces due to the two masses are equal and opposite. 
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Fig. 31 Balancing of a single rotating mass by a single mass rotating in the same plane. 

 

Let            r2 = Radius of rotation of the balancing mass m2 (i.e. distance between 

the axis of rotation of the shaft and the centre of gravity of mass m2). 

Centrifugal force due to mass m2, 

                                 FC2 = m2. 
2.
 r2 . . . (ii) 

Equating equations (i) and (ii), 

                                        m1.r1 m2.r2 or m1. r1 m2.r2 

Notes: 1    The product m2.r2 may be split up in any convenient way. But the radius 

of rotation of the balancing mass (m2) is generally made large in order to reduce 

the balancing mass m2. 

            2. The centrifugal forces are proportional to the product of the mass and 

radius of rotation of respective masses, because 
2 
is same for each mass. 

 

 3.4.4   Balancing of a Single Rotating Mass By Two Masses Rotating in 
Different Planes 
We have discussed in the previous article that by introducing a single balancing 

mass in the same plane of rotation as that of disturbing mass, the centrifugal forces 

are balanced. In other words, the two forces are equal in magnitude and opposite in 

direction. But this type of arrangement for balancing gives rise to a couple which 

tends to rock the shaft in its bearings. Therefore in order to put the system in 

complete balance, two balancing masses are placed in two different planes, parallel 

to the plane of rotation of the disturbing mass, in such a way that they satisfy the 

following two conditions of equilibrium. 

1. The net dynamic force acting on the shaft is equal to zero. This requires that the 

line of action of three centrifugal forces must be the same. In other words, the 

centre of the masses of the system must lie on the axis of rotation. This is the 

condition for static balancing. 
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2. The net couple due to the dynamic forces acting on the shaft is equal to zero. In 

other words, the algebraic sum of the moments about any point in the plane must 

be zero. 

 

The conditions (1) and (2) together give dynamic balancing. The following two 

possibilities may arise while attaching the two balancing masses: 

1. The plane of the disturbing mass may be in between the planes of the two 

balancing masses, and 

2. The plane of the disturbing mass may lie on the left or right of the two planes 

containing the balancing masses. 

We shall now discuss both the above cases one by one. 

 

1. When the plane of the disturbing mass lies in between the planes of the two 

balancing masses 

Consider a disturbing mass m lying in a plane A to be balanced by two rotating 

masses m1 and m2 lying in two different planes L and M as shown in Fig. 31 Let r, 

r1 and r2 be the radii of rotation of the masses in planes A, L and M respectively. 
  

 
Fig. 32.   Balancing of a single rotating mass by two rotating masses in different 

planes when the plane of single rotating mass lies in between the planes of two 

balancing masses. We know that the centrifugal force exerted by the mass m in the 

plane A, 
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                        FC = m. 2
. r 

Similarly, the centrifugal force exerted by the mass m1 in the plane L, 

                      FC1 = m1. 
2.
 r1 

and, the centrifugal force exerted by the mass m2 in the plane M, 

                     FC2 =  m2. 
2
. r2 

Since the net force acting on the shaft must be equal to zero, therefore the 

centrifugal force on the disturbing mass must be equal to the sum of the centrifugal 

forces on the balancing masses, therefore 

                  FC FC1 FC2 or m. 
2
.r = m1.

2
.r1 + m2 . 

2
 r2  

∴                 m⋅r m1 ⋅r1 m2 ⋅r2                                                                    . . . (i) 

Now in order to find the magnitude of balancing force in the plane L (or the 

dynamic force at the bearing Q of a shaft), take moments about P which is the 

point of intersection of the plane M and the axis of rotation. Therefore 

             FC1  l FC  l2 or m1.
2
.r1×l m


×r×l2 

m1× r1× l mrl2 or m1× r1 = m.r × 
  

 
                                    . . . (ii) 

Similarly, in order to find the balancing force in plane M (or the dynamic force at 

the bearing P of a shaft), take moments about Q which is the point of intersection 

of the plane L and the axis of rotation. Therefore 

                     FC2 ×l FC× l1 or  m2 .
2.
 r2 ×l   

                                =  m .
2
. r ×l1   

           m2 ⋅r2 ×l = m.r.l1   or    m2.r2 = m.r × 
  

 
                                          . . . (iii) 

It may be noted that equation (i) represents the condition for static balance, but in 

order to achieve dynamic balance, equations (ii) or (iii) must also be satisfied. 

2. When the plane of the disturbing mass lies on one end of the planes of the 

balancing masses                            

                
                    Fig 33 
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Fig.33  sows the balancing of a single rotating mass by two rotating masses in 
different planes, when the plane of single rotating mass lines at one end of the 
planes of balancing masses. 
 

In this case, the mass m lies in the plane A and the balancing masses lie in the 

planes L and M, as shown in Fig.33. As discussed above, the following conditions 

must be satisfied in order to balance the system, i.e. 

                   

                

 
 
 
3.4.5.   Balancing of Several Masses Rotating in the Same Plane 
Consider any number of masses (say four) of magnitude m1, m2, m3 and m4 at 

distances of r1, r2, r3 and r4 from the axis of the rotating shaft. Let  1,  2,  3  and  4 

be the angles of these masses with the horizontal line OX, as shown in Fig.34 (a). 

Let these masses rotate about an axis through O and perpendicular to the plane of 

paper, with a constant angular velocity of rad/s.  
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              Fig 34   Balancing of several masses rotating in the same plane. 

 

1. Analytical method 

The magnitude and direction of the balancing mass may be obtained, analytically, 

as discussed below: 

1. First of all, find out the centrifugal force* (or the product of the mass and its 

radius of rotation) exerted by each mass on the rotating shaft. 

* Since 
2 
is same for each mass, therefore the magnitude of the centrifugal force 

for each mass is proportional to the product of the respective mass and its radius of 

rotation. 

    2. Resolve the centrifugal forces horizontally and vertically and find their sums, 

i.e.              H and V We know that 

Sum of horizontal components of the centrifugal forces, 

                    H m1r1 cos 1 m2 r2 cos 2 . . . . . . 

and sum of vertical components of the centrifugal forces, 

V m1 ⋅r1 sin  1 m2 ⋅r2 sin 2 . . . . . . 

3 Magnitude of the resultant centrifugal force, 

          FC = √            

      4.  If   is the angle, which the resultant force makes with the horizontal, then 

                    tan  V /H 

5. The balancing force is then equal to the resultant force, but in opposite direction. 

6. Now find out the magnitude of the balancing mass, such that 

FC =  m. r 

where           m = Balancing mass, and  r = Its radius of rotation. 

 



96 
 

Example 3.7  Four masses m1, m2, m3 and m4 are 200 kg, 300 kg, 240 kg and 260 

kg respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 

0.3 m respectively and the angles between successive masses are 45°, 75° and 

135°. Find the position and magnitude of the balance mass required, if its radius of 

rotation is 0.2 m 

. 

Solution. Given: m1 = 200 kg; m2 = 300 kg ; m3 = 240 kg ; m4 = 260 kg ; r1 = 0.2 m 

; r2 = 0.15 m ; r3 = 0.25 m ; r4 = 0.3 m ;  1= 0° ;  2= 45° ;  3= 45° + 75° = 120° ; 

 4= 45° + 75° + 135° = 255° ; r = 0.2 m 

                     

 
 

                                                                                                 Fig 35 

 
3.4.6. Balancing of Several Masses Rotating in Different Planes 
When several masses revolve in different planes, they may be transferred to a 

reference plane (briefly written as R.P.), which may be defined as the plane 

passing through a point on the axis of rotation and perpendicular to it. The effect of 

transferring a revolving mass (in one plane) to a reference plane is to cause a force 

of magnitude equal to the centrifugal force of the revolving mass to act in the 

reference plane, together with a couple of magnitude equal to the product of the 

force and the distance between the plane of rotation and the reference plane. In 

order to have a complete balance of the several revolving masses in different 

planes, the following two conditions must be satisfied: 

1. The forces in the reference plane must balance, i.e. the resultant force must be 

zero. 
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2. The couples about the reference plane must balance, i.e. the resultant couple 

must be zero. Let us now consider four masses m1, m2, m3 and m4 revolving in 

planes 1, 2, 3 and 4 respectively as shown in Fig. 21.7 (a). The relative angular 

positions of these masses are shown in the end view [Fig. 36 (b)].  

The magnitude of the balancing masses mL and mM in planes L and M may be 

obtained as discussed below: 

1. Take one of the planes, say L as the reference plane (R.P.). The distances of all 

the other planes to the left of the reference plane may be regarded as negative, and 

those to the right as positive. 

2. Tabulate the data as shown in Table 3.1. The planes are tabulated in the same 

order in which they occur, reading from left to right. 

 

                            Fig. 3.1 

 
 
                (a) Position of planes of the masses. (b) Angular position of the masses. 

 

 

 

 



98 
 

 
         Fig. 36. Balancing of several masses rotating in different planes. 

 

3. A couple may be represented by a vector drawn perpendicular to the plane of the 

couple. The couple C1 introduced by transferring m1 to the reference plane through 

O is propor tional to m1.r1.l1 and acts in a plane through Om1 and perpendicular to 

the paper. The vector representing this couple is drawn in the plane of the paper 

and perpendicular to Om1 as shown by OC1 in Fig.36 (c). Similarly, the vectors 

OC2, OC3 and OC4are drawn perpendicular to Om2, Om3 and Om4 respectively and 

in the plane of the paper. 

4. The couple vectors as discussed above, are turned counter clockwise through a 

right angle for convenience of drawing as shown in Fig.36 (d). 

 We see that their relative positions remains unaffected. Now the vectors OC2, OC3 

and OC4 are parallel and in the same direction as Om2, Om3 and Om4, while the 

vector OC1 is parallel to Om1 but in *opposite direction. Hence the couple vectors 

are drawn radially outwards for the masses on one side of the reference plane 

and radially inward for the masses on the other side of the reference plane. 
5. Now draw the couple polygon as shown in Fig.36 (e).  

The vector d′o′represents the balanced couple. Since the balanced couple CM is 

proportional to mM . rM . lM, therefore 

                                cM = mM . rM . lM = vector d’ o’ or mM = 
           

         
 

From this expression, the value of the balancing mass mM in the plane M may be 

obtained, and the angle of inclination  of this mass may be measured from Fig. 

36(b). 

6. Now draw the force polygon as shown in Fig.36 ( f ). The vector eo (in the 

direction from e to o ) represents the balanced force. Since the balanced force is 

proportional to mL. rL, therefore, 
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                       mM . rM = vector e o or mL = 
         

  
 

From this expression, the value of the balancing mass mL in the plane L may be 

obtained and the angle of inclination   of this mass with the horizontal may be  
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