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SIMPLE HARMONIC MOTION.

Introduction
Consider a particle moving round the circumference of a circle in an

anticlockwise direction, with a constant angular velocity, as shown in
Fig.1.
Let ‘P’ be the position of the particle at any instant, and ‘N’ is the
projection of P on the diameter XX’ of the circle.
When the point P moves round the circumference of the circle from X to
Y, then N moves from X to O.
When P moves from Y to X’, then N moves from O to X’. Similarly
when P moves from X’ to Y?, then N moves from X’ to O and finally
when P moves from Y’ to X, then N moves from O to X.
Hence, as P completes one revolution, the point N completes one
vibration about the point O. This to and fro motion of N is known
as simple harmonic motion (S.H.M.).
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1.2 Velocity and Acceleration of a Particle Moving with S.H.M
Let us consider a particle, moving round the circumference of a circle of
radius r, with a uniform angular velocity o rad/s, as shown in Fig.2.

Let P be any position of the particle after t seconds and © be the angle
turned by the particle in t seconds. We know that © = .t

If N is the projection of P on the diameter XX, then displacement of N
from its mean position O is, always directed towards the Centre O; so
that the motion of N is simple harmonic.

X =1Tr.C0S © =r.cos.ot .. (1)
The velocity of N is the component of the velocity of P parallel to XX ?,
i.e. Vy=vsin B=.rsin® = oV(r’ — x%) ... (i)

[v=r. ®],and rsin® = NP = V(r* — x).
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Fig.2. Velocity and acceleration of particle.

In general, a body is said to move or vibrate with simple harmonic
motion, if it satisfies the following two conditions

1. Its acceleration is always directed towards the centre, known as
point of reference or mean position;

2. Its acceleration is proportional to the distance from that point.

Movements of a ship up and down in a vertical plane about transverse axis
(called Pitching) and about longitude (called rolling) are in Simple
Harmonic Motion.



1.3 Differential Equation of Simple Harmonic Motion
We have discussed in the previous article that the displacement of N from its mean position Ois
X =r.cos 0 = r.cos Wt o (1)

Differentiating equation (i), we have velocity of N,

dx : >
— = vy = r.osinmt oo ()
de " (
Again differentiating equation (i), we have acceleration of N,
, d2X 7 2 -
57— =ay =—r.0 0C0s Of =—0°.rcos Of = -0 .x oo (i)
dt
. (v recosmt=x)
2.
- Lo >+ 0'x=0
dt

This is the standard differential equation for simple harmonic motion of a particle. The
solution of this differential equation is

x=Acoswt+Bsinwt o (1Y)
where A and B are constants to be determined by the initial conditions of the motion.
In Fig.2, when t =0, X = r i.e. when points P and N lie at X, we have
from equation (iv), A=r
i . : : d :
Differentiating equation (iv), d—’: =-A.wsin o.t+ B.ocosmt

When ¢ = 0, % = (), therefore, from the above equation, B = 0. Now the equation (/v) becomes

x=rcosmf ... |Same as equation (7)]

The equations (i) and (/7)) may be written as

%‘;— = vy =—.r sin W = O.r cos (Wi+n/2)
d’x 2 2
and —d—-2—=aN = —®°.r cos ® = ® rcos(0f+m)
t

These equations show that the velocity leads the displacement by 90° and acceleration leads
the displacement by 180°.

The negative sign shows that the direction of acceleration is opposite to the direction in which x increases,
i.e. the acceleration is always directed towards the point O.



1.4. Terms Used in Simple Harmonic Motion
The following terms, commonly used in simple harmonic motion, are
important from the subject point of view.
1. Amplitude. It is the maximum displacement of a body from its mean
position. In Fig. 2, OX or OX” is the amplitude of the particle P. The
amplitude is always equal to the radius of the circle.
2. Periodic time. It is the time taken for one complete revolution of the
particle.

=~ Periodic time, Tp = 2n/® seconds

a=wlx or (x)2=g or M= \/;
X

v \/2 J Dlsplacement e
a Acceleration

It is thus obvious, that the periodic time is independent of amplitude.

3. Frequency. It is the number of cycles per second and is the reciprocal of time period, t,.

a
Frequency, n=—-—=—=+= .= Hz
X

Type equation here.Notes: 1. In S.1. units, the unit of frequency is hertz
(briefly written as Hz) which is equal to one cycle per second.

2. When the particle moves with angular simple harmonic
motion, then the periodic time

Angular displacement
tp= 2n V{
Angular acceleratlon

and frequency, n = E V2 ~HZ

}= 2nv2 sec.
a

Example 1.1. The piston of a steam engine moves with simple harmonic
motion. The crank rotates at 120 r.p.m. with a stroke of 2 metres. Find
the velocity and acceleration of the piston, when it is at a distance of
0.75 metre from the centre.



Solution. Given: N =120 r.p.m. or ® = 21x120/60 = 4 rad/s; 2r=2m
orr=1m;x=0.75m

Velocity of the piston

We know that velocity of the piston, V= o\’ —x* = 4nV 1 — (0.75)* =
8.31 m/s.

Acceleration of the piston

We also know that acceleration of the piston,

a= "X = (4r)* 0.75 = 118.46 m/s* Ans.

Example 1.2. A point moves with simple harmonic motion. When this
point is 0.75metre from the mid path, its velocity is 11 m/s and when 2
metres from the centre of its path its velocity is 3 m/s. Find its angular
velocity, periodic time and its maximum acceleration.

Solution. Given : When x=0.75m, v=11 m/s ; whenx=2m, v=3 m/s
Angular velocity
Let o = Angular velocity of the particle, and
r= Amplitude of the particle.
We know that velocity of the point when it is 0.75 m from the mid path (v),

11=0)\/r2—x2 =(|)\/r2—(0.75)2 T

Similarly, velocity of the point when it is 2 m from the centre (v),

3=t -2 .. (i)

Dividing equation () by equation (i7),

11 ot -075 #0715

g e B JZ 22
...

N .

Squaring both sides, 1? = rzo;sfzs

121r°—484=9r"-506 or 112r*=478.94
r2=47894/112=4276 or r=207m

Substituting the value of r in equation (i),



Solution. Given : When x=0.75m, v=11 m/s ; whenx=2m, v=3 m/s
Angular velocity
Let ® = Angular velocity of the particle, and
r= Amplitude of the particle.
We know that velocity of the point when it is 0.75 m from the mid path (v),

11=m,/r2— = 02— (0.75)2 oo (D)

Similarly, velocity of the point when it is 2 m from the centre (v),

3=wVrf-2° i)

Dividing equation (/) by equation (i7),

11_ oyt -075)° _ | -(075)°

3 oZ -2 JZE =22

C

Squaring both sides,

121 r*—0.5625
9 24
121 2-484=92-506 or 112 72=47894
2 =47894/112=4276 or r=207Tm

Substituting the value of rin equation (i),

11=0(207)? - (0.75% =1.93 o
®=11/1.93 = 5.7 rad/s Ans.

Periodic time
We know that periodic time,
tp=21t/(0=27t/5.7= 1.1 s Ans.
Maximum acceleration

We know that maximum acceleration,

a =o’r=(5.7)22.07=67.25 m/s? Ans.



1.5. Simple Pendulum
A simple pendulum, in its simplest form, consists of heavy bob suspended at the
end of a light inextensible and flexible string. The other end of the string is fixed at
O, as shown in Fig. 3. Let L = Length of the string,

m = Mass of the bob in kg,

W = Weight of the bob in newtons = m.g, and

© = Angle through which the string is displaced.
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Fig .3. Simple pendulum.

When the bob is at A, the pendulum is in equilibrium position. If the bob is brought
to B or C and released, it will start oscillating between the two positions B and C,
with A as the mean position.
It has been observed that if the angle © is very small (less than 4°), the bob will
have simple harmonic motion. Now, the couple tending to restore the bob to the
equilibrium position or restoring torque,

T=mgsin©xL
Since angle O is very small, therefore sin © = © radians.

T=mg.LO

We know that the mass moment of inertia of the bob about an axis through the
point of suspension,

| = mass x (length)® = m.L?

Angular acceleration of the string,
mg.LO _ g0 0

T _L
oCc=—= == 0or —=-
1 m.L? L a g




Angular displacement

; L
e Angular acceleration g

We know that the periodic time,

o Dnsplacem‘ent =0 Vs T
P Acceleration g
and frequency of oscillation,
SN 0 - i
= t_ =i \/: . ()

From above we see that the periodic time and the frequency of oscillation of a simple
pendulum depends only upon its length and acceleration due to gravity. The mass of the bob has no
effect on it.

Notes : 1. The motion of the bob from one extremity to the other (i.e. from B to Cor Cto B) is known as beat

or swing. Thus one beat = % oscillation.

.. Periodic time for one beat= © /L/g

2. A pendulum, which executes one beat per second (i.e. one complete oscillation in two seconds) is
known as a second’s pendulum.

1.6. Laws of Simple Pendulum

The following laws of a simple pendulum are important from the subject point of
view:

1. Law of isochronism. It states, “The time period (tp) of a simple pendulum does
not depend upon its amplitude of vibration and remains the same, provided the
angular amplitude (6©) does not exceed 4°.”

2. Law of mass. It states, “The time period (tp) of a simple pendulum does not
depend upon the mass of the body suspended at the free end of the string.”

3. Law of length. It states, “The time period ({p,) of a simple pendulum is directly
proportional to VL, where L is the length of the string.”

4. Law of gravity. It states, “The time period (lp) of a simple pendulum is inversely
proportional to Vg, where g is the acceleration due to gravity.”

Note: The above laws of a simple pendulum are true from the equation of the
periodic time i.e.

t,-2n/L/g



1.7. Closely-coiled Helical Spring
Consider a closely-coiled helical spring, whose upper end is fixed, as shown in Fig.
4. Let a body be attached to the lower end. Let A A be the equilibrium position of
the spring, after the mass is attached. If the spring is stretched up to BB and then
released, the mass will move up and down with simple harmonic motion.
Let m = Mass of the body in kg,

W = Weight of the body in newtons = m.g,

x = Displacement of the load below equilibrium position in
metres,

s = Stiffness of the spring in N/m i.e. restoring force per unit
displacement from the equilibrium position,

a = Acceleration of the body in m/s’.

We know that the deflection of the spring, & = % . (1)
Then disturbing force = m.a
And restoring force = s.x .. (i)
Equating equations (i) and (ii), m.a =s.X* or = % = %
The differential equation for the motion of the spring is
2 2
m%:-sxor%:% ....(HeremZ:%)

The — ve sign indicates that the restoring force s.x is opposite to the direction of
disturbing force.

We know that periodic time,

’ Displacement
o & Acceleration "
= 2% ,—”=27t —6 (szﬂ)
e 1’ g S

1 1 /5 1. (8

and frequency, n=—=— ,[=> =— |2

l e s L, 2n\m 2rn\d
0]

Note: If the mass of the spring (m,) is also taken into consideration, then the periodic time,

Ny

m+m/3
s

seconds,

lp:27t

1 s
d fi 2 e
= e e 2n\m+m/3

When we stretch a spring with a mass on the end and let it go, the mass will
oscillate back and forth (if there is no friction). This oscillation is called S.H.M.

9
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Fig. 4 Closely - coiled helical spring.

Example 1.3. A helical spring, of negligible mass, and which is found to extend
0.25 mm under a mass of 1.5 kg, is made to support a mass of 60 kg. The spring
and the mass system is displaced vertically through 12.5 mm and released.
Determine the frequency of natural vibration of the system. Find also the velocity
of the mass, when it is 5 mm below its rest position.

Solution. Given: m=60kg ; r=12.5 mm =0.0125 m ; x =5 mm = 0.005 mSince
a mass of 1.5 kg extends the spring by 0.25 mm, therefore a mass of 60 kg will
extend the spring by an amount,

o = 01255 <60 =10mm = 0.0l m

Frequency of the system
We know that frequency of the system,

n=- S =% "D.Cl = 498 Hz Ans
Velocity of the mass

Let v = Linear velocity of the mass.
We know that angular velocity,

e fg _ {9.81 _
) 5 0.01 31.32 rad/s

v=mr?—x* =31.32,/(0.0125)2 —(0.005)2 = 0.36 m/s Ans.

and

10



1.8. Compound Pendulum

When a rigid body is suspended vertically, and it oscillates with a small amplitude
under the action of the force of gravity, the body is known as compound
pendulum, as shown in Fig.5.

Let m = Mass of the pendulum in kg,
W = Weight of the pendulum in newtons = m.g,
* We know that periodic time,
27 _ 2T

[p=—0r®=—=2nxn=2nx4.98 =313 rad/s
("." n=1/tp)

Fig. 5

ke = Radius of gyration about an axis through the centre of
gravity G and perpendicular to the plane of motion, and
h = Distance of point of suspension O from the centre of gravity
G of the body.
If the pendulum is given a small angular displacement ©, then the couple tending
to restore the pendulum to the equilibrium position OA,
T=mgsinO@xh=mghsin©
Since O is very small, therefore substituting sin © = © radians, we get
T=mgheo
Now, the mass moment of inertia about the axis of suspension O,

11



I[=1I; + mh*= m(kcz; +h2) .. . (By parallel axis theorem)
.. Angular acceleration of the pendulum,

mgh© oh©
o= (L ‘5” = ZD > = constant x 0
I m(kG+h*) ki+h

We see that the angular acceleration is directly proportional to angular displacement,
therefore the pendulum executes simple harmonic motion.

o g.h

0 K + 1

We know that the periodic time,

’ Displacement , 0
P T Acceleration & o
K+ 1

=2
g g.h

.. (1)

o L gh .
and frequency of oscillation, 7= E =or ké T ... (i)
Notes: 1. Comparing this equation with equation (ii) of simple pendulum, we see
that the equivalent length of a simple pendulum, which gives the same frequency
2 h2 2
as compound pendulum, is L= AN th; + h
2. Since the equivalent length of simple pendulum (L) depends upon the distance
between the point of suspension and the centre of gravity (G), therefore L can be
changed by changing the position of point of suspension.
This will, obviously, change the periodic time of a compound pendulum. The
periodic time will be minimum if L is minimum. For L to be minimum, the

differentiation of L with respect to h must be equal to zero, i.e.
dL d 2
—:Oor—:(%+h) =0

K?g
o +1=00rK; = h
Thus the periodic time of a compound pendulum is minimum when the
distance between the point of suspension and the centre of gravity is equal to the
radius of gyration of the body about its centre of gravity.

~ Minimum periodic time of a compound pendulum,
2
b (i) = 271\/% ... [Substituting h = kg in equation (i)]

12



Example 4.4. A uniform thin rod, as shown in Fig. 4.7, has a mass of 1 kg and
carries a concentrated mass of 2.5 kg at B. The rod is hinged at A and is
maintained in the horizontal position by a spring of stiffness 1.8 kN/m at C.
Find the frequency of oscillation, neglecting the effect of the mass of the spring.

A c @

2.5kg
e

A AN

300 mm

Fig. 6.
Solution. Given: m=1kg; m;=2.5kg; s= 1.8 kN/m = 1.8 x 10* N/m
We know thiat total length of rod,
/=300 + 300 = 600 mm = 0.6 m

.. Mass moment of inertia of the system about A4,

I, = Mass moment of inertia of 1 kg about A + Mass moment of interia of
2.5 kg about A

_ml +mlt = 106"

3 3

If the rod is given a small angular displacement 6 and then released, the extension of the spring,
0=03sin6=0.30 m
... (= ©is very small, therefore substituting sin® =0 )

. Restoring force =5.8=1.8 x 10 x0.36=540 0N

+ 2.5 (0.6)% = 1.02 kg-m?

and restoring torque about A = 5400 x 0.3 =162 6 N-m .. (1)
We know that disturbing torque about A
= [A x o= 1.0200 N-m s i)

Equating equations (1) and (if),
1.02a=1620 or a/6=162/1.02=159

We know that freauency of oscillation.

1 a 1
n= E \/; = E\/159
= 2.01 HZ.

13



Example 4.5. A small flywheel of mass 85 kg is suspended in a vertical plane as a
compound pendulum. The distance of centre of gravity from the knife edge support
Is 100 mm and the flywheel makes 100 oscillations in 145 seconds. Find the
moment of inertia of the flywheel through the centre of gravity.

Solution. Given: m=85kg; h=100 mm=0.1m
Since the flywheel makes 100 oscillations in 145 seconds, therefore frequency of
oscillation, n = 100/145 = 0.69 Hz
Let L = Equivalent length of simple pendulum, and
ke = Radius of gyration through C.G.
We know that frequency of oscillation (n),

0691 [8_1 [981 05

2n VL 2m Lz\/'[

JL =05/0.69 =0.7246 or L=0525m

We also know that equivalent length of simple pendulum (L),

k2 k? k2 +(0.1)2
0.525 h + h 0.1 + 0.1 01

K =0.525x0.1 — (0.1)2 = 0.0425 m®

and moment of inertia of the flywheel through the centre of gravity,
| =m.k’G =85 x 0.0425 = 3.6 kg-m* Ans.

Example 4.9. A small connecting rod of mass 1.5 kg is suspended in a horizontal
plane by two wires 1.25 m long. The wires are attached to the rod at points 120
mm on either side of the centre of gravity. If the rod makes 20 oscillations in 40
seconds, find the radius of gyration and the mass moment of inertia of the rod
about a vertical axis through the centre of gravity.

Solution. Given:m=15kg; 1 =1.25m; x=y=120mm =0.12 m

Since the rod makes 20 oscillations in 40 s, therefore frequency of oscillation,
n=20/40 =0.5Hz

Radius of gyration of the connecting rod

Let ke = Radius of gyration of the connecting rod.

14



We know that frequency of oscillation (n),
1 1 .81X0.12X0.12 0.0535
05=—— V&%= V2 =
2m K¢ T 2mKg 1.25 K

' K. = 0.0535/0. 5 =0.107m = 107mm.
Mass moment of inertia of the connecting rod
We know that mass moment of inertia,

| =m (kg)* = 1.5 (0.107)* = 0.017 kg-m2 Ans.

TUTORIALS .1.
1. A particle, moving with simple harmonic motion, performs 10 complete
oscillations per minute and its speed, when at a distance of 80 mm from the centre
of oscillation is 3/5 of the maximum speed.
Find the amplitude, the maximum acceleration and the speed of the particle, when
it is 60 mm from the centre of the oscillation. [Ans. 100 mm; 109.6 mm/s2; 83.76
mm/s]
2. A piston, moving with a simple harmonic motion, has a velocity of 8 m/s, when
it is 1 metre from the centre position and a velocity of 4 m/s, when it is 2 metres
from the centre. Find: 1. Amplitude, 2.Periodic time, 3. Maximum velocity, and 4.
Maximum acceleration. [Ans. 2.236 m; 1.571 s; 8.94 m/s; 35.77 m/s2]
3. The plunger of a reciprocating pump is driven by a crank of radius 250 mm
rotating at 12.5 rad/s.
Assuming simple harmonic motion, determine the maximum velocity and
maximum acceleration of the plunger. [Ans. 3.125 m/s; 39.1 m/s2]
4. A part of a machine of mass 4.54 kg has a reciprocating motion which is simple
harmonic in character.
It makes 200 complete oscillations in 1 minute. Find: 1. the accelerating force upon
it and its velocity when it is 75 mm, from mid-stroke; 2. the maximum accelerating
force, and 3. the maximum velocity if its total stroke is 225 mm i.e. if the
amplitude of vibration is 112.5 mm. [Ans. 1495 N ; 1.76 m/s ; 224 N ; 2.36 m/s]
5. A helical spring of negligible mass is required to support a mass of 50 kg. The
stiffness of the spring is 60 kN/m. The spring and the mass system is displaced
vertically by 20 mm below the equilibrium position and then released. Find: 1. the
frequency of natural vibration of the system; 2. the velocity and acceleration of the
mass when it is 10 mm below the rest position. [Ans. 5.5 Hz; 0.6 m/s ; 11.95
m/s2]
6. A spring of stiffness 2 kN/m is suspended vertically and two equal masses of 4
kg each are attached to the lower end. One of these masses is suddenly removed
and the system oscillates.

15



Determine: 1. The amplitude of vibration, 2. the frequency of vibration, 3. the
velocity and acceleration of the mass when passing through half amplitude
position, and 4. kinetic energy of the vibration in joules.

[Ans. 0.019 62 m; 3.56 Hz; 0.38 m/s, 4.9 m/s%; 0.385 J]

7. A vertical helical spring having a stiffness of 1540 N/m is clamped at its upper
end and carries a mass of 20 kg attached to the lower end. The mass is displaced
vertically through a distance of 120 mm and released. Find: 1. Frequency of
oscillation; 2. Maximum velocity reached; 3. Maximum acceleration; and 4.

Maximum value of the inertia force on the mass. [Ans. 1.396 Hz; 1.053 m/s; 9.24
m/s®; 184.8 N]

8. A small flywheel having mass 90 kg is suspended in a vertical plane as a
compound pendulum. The distance of centre of gravity from the knife edge support

Is 250 mm and the flywheel makes 50 oscillations in 64 seconds. Find the moment
of inertia of the flywheel about an axis through the centre of gravity. [Ans. 3.6 kg-
m2].

2.0 VIBRATION.

2.1. Introduction

When elastic bodies such as a spring, a beam and a shaft are displaced from the
equilibrium position by the application of external forces, and then released, they
execute a vibratory motion. This is due to the reason that, when a body is
displaced, the internal forces in the form of elastic or strain energy are present in
the body. At release, these forces bring the body to its original position. When the
body reaches the equilibrium position, the whole of the elastic or strain energy is
converted into kinetic energy due to which the body continues to move in the
opposite direction. The whole of the kinetic energy is again converted into strain
energy due to which the body again returns to the equilibrium position. In this way,
the vibratory motion is repeated indefinitely.

2.2. Terms Used in Vibratory Motion

The following terms are commonly used in connection with the vibratory motions:
1. Period of vibration or time period. It is the time interval after which the motion
is repeated itself. The period of vibration is usually expressed in seconds.

2. Cycle. It is the motion completed during one time period.

16



3. Frequency. It is the number of cycles described in one second. In S.1. units, the
frequency is expressed in hertz (briefly written as Hz) which is equal to one cycle
per second.

2.3. Types of Vibratory Motion

The following types of vibratory motion are important from the subject point of
view:

1. Free or natural vibrations. When no external force acts on the body, after
giving it an initial displacement, then the body is said to be under free or natural
vibrations. The frequency of the free vibrations is called free or natural
frequency.

2. Forced vibrations. When the body vibrates under the influence of external force,
then the body is said to be under forced vibrations. The external force applied to
the body is a periodic disturbing force created by unbalance. The vibrations have
the same frequency as the applied force.

Note: When the frequency of the external force is same as that of the natural
vibrations, resonance takes place.

3. Damped vibrations. When there is a reduction in amplitude over every cycle of
vibration, the motion is said to be damped vibration. This is due to the fact that a
certain amount of energy possessed by the vibrating system is always dissipated in
overcoming frictional resistances to the motion.

2.4. Types of Free Vibrations
The following three types of free vibrations are important from the subject point of
view:
1. Longitudinal vibrations, 2. Transverse vibrations, and 3. Torsional
vibrations. Consider a weightless constraint (spring or shaft) whose one end
Is fixed and the other end carrying a heavy disc, as shown in Fig.7. This
system may execute one of the three above mentioned types of vibrations.

17
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Shaft A1 !

B = Mean position ; A and C = Extreme positions.

9 (a) Longitudinal vibrations. (b) Transverse vibrations. (c) Torsional vibrations

1. Longitudinal vibrations. When the particles of the shaft or disc moves parallel
to the axis of the shaft, as shown in Fig.7. (a), then the vibrations are known as
longitudinal vibrations.

In this case, the shaft is elongated and shortened alternately and thus the tensile and
compressive stresses are induced alternately in the shaft.

2. Transverse vibrations. When the particles of the shaft or disc move
approximately perpendicular to the axis of the shaft, as shown in Fig.7. (b), then
the vibrations are known as transverse vibrations. In this case, the shaft is straight
and bent alternately and bending stresses are induced in the shaft.

3. Torsional vibrations*. When the particles of the shaft or disc move in a circle
about the axis of the shaft, as shown in Fig.7 (c), then the vibrations are known as
torsional vibrations.

In this case, the shaft is twisted and untwisted alternately and the torsional shear
stresses are induced in the shaft.

Note: If the limit of proportionality (i.e. stress proportional to strain) is not
exceeded in the three types of vibrations, then the restoring force in longitudinal
and transverse vibrations or the restoring couple in torsional vibrations which is
exerted on the disc by the shaft (due to the stiffness of the shaft) is directly
proportional to the displacement of the disc from its equilibrium or mean position.
Hence it follows that the acceleration towards the equilibrium position is directly
proportional to the displacement from that position and the vibration is, therefore,
simple harmonic.

18



2.5. Natural Frequency of Free Longitudinal Vibrations
The natural frequency of the free longitudinal vibrations may be determined by the
following three methods:

1. Equilibrium Method
Consider a constraint (i.e. spring) of negligible mass in an unstrained position, as
shown in Fig. 8. (a).

Let s = Stiffness of the constraint. It is the force required to produce unit

displacement in the direction of vibration. It is usually expressed in N/m.
m = Mass of the body suspended from the constraint in kg,
W = Weight of the body in newtons = m.g,

& = Static deflection of the spring in metres due to weight W newtons, and
x = Displacement given to the body by the external force, in metres.

(a) (b) (c)
s
~ . 2 W=s.5
Unstrained 8
position * m s(8+x) -
X
W= mg S r
W
mdx
ot

Fig.8. Natural frequency of free longitudinal vibrations.

In the equilibrium position, as shown in Fig.8. (b), the gravitational pull W =m.g,

is balanced by a force of spring, such that W = S.5.
Since the mass is now displaced from its equilibrium position by a distance x, as
shown in Fig. 8 (c), and is then released, therefore after time t,
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Restoring force =W-s(@+x)=W-50-s.x

=50—850—s.x=—sx vn o 2 W=5d) ... (1)
.. . (Taking upward force as negative)
and Accelerating force = Mass x Acceleration
dZ
= mxﬁ' . . (Taking downward force as positive) . . . (ii)

Equating equations (#) and (i7), the equation of motion of the body of mass m after time ¢ is
d?x d?

X
MX——F==SX or MX——+5X= 0
dt dt
d’x s s
= g i) ... (i)
dt* m
We know that the fundamental equation of simple harmonic motion is
2
X
—+0°.x=0 o (W)
dt

Comparing equations (#ii) and (iv), we have

S
(l)=‘/—
m

2
.. Time period, t, = f= Zn\/%n

and natural frequency, i s 2 _1is_1 \/E ... (v mg=s9)
" t, 2n\m 2rnV3
Taking the value of g as 9.81 m/s” and & in metres,

1 ]9.81 - 0.4985 Uy

2\ 8 Jo

Note : The value of static deflection § may be found out from the given conditions of the problem. For
longitudinal vibrations, it may be obtained by the relation,

Stress w_1 W.1
=E —X—=F ===
Strain S = EA
where O = Static deflection i.e. extension or compression of the constraint,

W = Load attached to the free end of constraint,
1= Length of the constraint,
E = Young's modulus for the constraint, and

A = Cross-sectional area of the constraint.
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2. Energy method
We know that the kinetic energy is due to the motion of the body and the potential
energy is with respect to a certain datum position which is equal to the amount of
work required to move the body from the datum position.
In the case of vibrations, the datum position is the mean or equilibrium position at
which the potential energy of the body or the system is zero.
In the free vibrations, no energy is transferred to the system or from the system.
Therefore the summation of kinetic energy and potential energy must be a constant
quantity which is same at all the times. In other words,

= (K.E.+P.E) =0
t
We know that kinetic energy,
d
K.E. = 1/2.m.(=£)?
de

X=—XS8X

and potential energy, PE. :[ 0+sx ] -

... (++ PE. = Mean force x Displacement )

dt| 2 t
| dx dzx | dx
—XMXZX—X——+—XsX2xx—=10
dt di¢ 2 dt
2 2
or mx—X+ sx¥x=0 or Q+ixx =) ... (Same as before)
dt d¢ m

The time period and the natural frequency may be obtained as discussed in the previous
method.
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3. Rayleigh’s method
In this method, the maximum Kinetic energy at the mean position is equal to the
maximum potential energy (or strain energy) at the extreme position. Assuming the
motion executed by the vibration to be simple harmonic, then

X =Xsinw.t (1)
where x = Displacement of the body from the mean position after time t
seconds, and

X = Maximum displacement from mean position to extreme position.

Now, differentiating equation (i), we have
i =wx Xcos.t
dt

Since at the mean position, ¢ = 0, therefore maximum velocity at the mean position,

V= ﬁ =nX
dt

Maximum kinetic energy at mean position

2
2

X m.v* =%xm.(u)2.X2 .. )

and maximum potential energy at the extreme position

0%xsX 1
=[ : )ngxs.xz .. (i)

Equating equations (i) and (i),

1 1 s s
—X m.(l)2 .X2 = —XS.XZ or (,)2 =— .and ®=,|—
2 2 m m

2n s
=——=2m,|— ... (Same as before)

Time period, tp
(0] m

1 _ o _1 rs
and natural frequency, f,=—=—=—V—
tp 2 2T mMm

Note: In all the above expressions, is known as natural circular frequency and

is generally denoted by |n.
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2.6. Natural Frequency of Free Transverse

Vibrations
Consider a shaft of negligible mass, whose one end is fixed and the other end
carries a body of weight W, as shown in Fig.9.
Let s = Stiffness of shaft,
o = Static deflection due to weight of the body,
x = Displacement of body from mean position after time t.
m = Mass of body = W/g

Restoring force = —s.x ()

. d? ..
and accelerating force = m x d—t;‘ ... (1)

Equating equations (i) and (ii), the equation of motion becomes

]
-
= = = = — - = - - W — e —
= 5
— Mean position _
% I
4
| i |
Position after —-— —- —1—.%
time ¢ I I

af
Fig. 9. Natural frequency of free transverse vibrations.

d’x zx
mX——=-5x  Or mx—2+s.X:0
dt2 dt
2
Q+i><x:0 ... (Same as before )
d¢ m

Hence, the time period and the natural frequency of the transverse vibrations are same as
that of longitudinal vibrations. Therefore

m
Time period, £, =2 KJ:
s
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and natural frequency, £ = 1..14¢ 1 JQ?
t, 2n\m 2mY3d

Note : The shape of the curve, into which the vibrating shaft deflects, is identical with the static deflection
curve of a cantilever beam loaded at the end. It has been proved in the text book on Strength of Materials,
that the static deflection of a cantilever beam loaded at the free end is

_we
3EI
where W = Load at the free end, in newtons,

1= Length of the shaft or beam in metres,
E = Young's modulus for the material of the shaft or beam in

N/m?, and
I = Moment of inertia of the shaft or beam in m?,

(in metres)

Example 2.1. A cantilever shaft 50 mm diameter and 300 mm long has a disc of
mass 100 kg at its free end. The Young's modulus for the shaft material is 200
GN/m?. Determine the frequency of longitudinal and transverse vibrations of the

shaft.

Solution. Given: d =50 mm = 0.05 m; | =300 mm = 0.3 m; m = 100 kg;

E =200 GN/m? = 200 x10° N/m?

We know that cross-sectional area of the shaft,

Solution. Given: d =50 mm =0.05 m; | =300 mm = 0.03 m; m = 100 kg ;
E =200 GN/m2 =200 x109 N/m2

We know that cross-sectional area of the shaft,

Az%xdz :%(0.05)2 ~1.96x10"3m?

and moment of inertia of the shaft,

(L, B, (0.05)4 =0.3x105m*
64
Frequency of longitudinal vibration
We know that static deflection of the shaft,
Wi 100x9.81x0.3

L =0.751x10% m
AE  1.96x107 x200x10°

(s W=mg)
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. Frequency of longitudinal vibration,

04985 0.4985

£, = =
Vo Jo.751%10°

Frequency of transverse vibration

=575 Hz Ans.

We know that static deflection of the shaft,

WP 100x9.81%(0.3)°
3EI  3x200x10%%0.3x1078

Frequency of transverse vibration,

04985 0.4985

f, = = =41 Hz Ans.
TV Jo1arxi07®

=0.147x103 m

2.7. Effect of Inertia of the Constraint in Longitudinal

and Transverse Vibrations
In deriving the expressions for natural frequency of longitudinal and transverse
vibrations, we have neglected the inertia of the constraint i.e. shaft. We shall now
discuss the effect of the inertia of the constraint, as below:

1. Longitudinal vibration
Consider the constraint whose one end is fixed and other end is free as shown in
Fig.10.
Let m, = Mass of the constraint per unit length,
| = Length of the constraint,
m. = Total mass of the constraint = m..l, and
v = Longitudinal velocity of the free end.
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[
Lﬁx

\_[_l

Vv
Fig. 10. Effect of inertia of the
constraint in longitudinal vibrations.

—x
m

Consider a small element of the constraint at a distance x from the fixed end and of
Length 6x.
~ Velocity of the small element

X
=Xy

/
and kinetic energy possessed by the element

1
=— x Mass (velocity)2

2

2 2
:ixm].ax[fxv) K
2 1 21

Total kinetic energy possessed by the constraint,

/
_ j’ﬂﬁxd‘:"«-* il
0 2/ 2% 13

0
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3
:ln";/Z xl—:lxml.vle:l(m]vzzl[ﬂlvz (7
2F 3 2 3 2\ 3

. . . (Substituting m, . /= m)

mc

If a mass of 3

is placed at the free end and the constraint is assumed to be of negligible

mass, then
Total kinetic energy possessed by the constraint

1( m
=§ T .. . [Same as equation ()] . . . (if)

Hence the two systems are dynamically same. Therefore, inertia of the constraint may be
allowed for by adding one-third of its mass to the disc at the free end.

From the above discussion, we find that when the mass of the constraint m- and the mass
of the disc m at the end is given, then natural frequency of vibration,

2. Transverse vibration
Consider a constraint whose one end is fixed and the other end is free as shown in
Fig.11.
Let m, = Mass of constraint per unit length,
| = Length of the constraint,
mc = Total mass of the constraint = m.1, and

v = Transverse velocity of the free end.
Consider a small element of the constraint at a distance x from the fixed end and of
length 8x. The velocity of this element is

4V

|
<« x=| |e=0dx

T

Fig.11. Effect of inertia of the constraint in transverse vibrations.

ISR,

¥
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) . 31.,\'2 - x3 ol
iven —— .
BV 28

Kinetic energy of the element

2
2 2P

and total kinetic energy of the constraint,

1 \2
J‘ [31x2 ] dx=ml';2 (
0 81 0
_ml-"z (97250 Glx x_
- 8f | 5 7

~

A 61x° +x5) dx

_”’1-"2 9/ 6]7 17 ml 3317
“8f |5 6 7 "—ﬁ” 35

(140><mc]‘/2 (@

. (Substituting m,./ = m)

33
VZ
=280 <™t 140
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C s placed at the free end and the constraint is assumed to be of negli-

If a mass of

gible mass, then
Total kinetic energy possessed by the constraint

1(33mg
=51 T . . . [Same as equation (1)]

Hence the two systems are dynamically same. Therefore the inertia of the constraint may

be allowed for by adding 110 of its mass to the disc at the free end.

From the above discussion, we find that when the mass of the constraint mg, and the mass
of the disc m at the free end is given, then natural frequency of vibration,

g Bl &
27 [n+33[IIC
140

Notes: 1. If both the ends of the constraint are fixed, and the disc is situated in the
middle of it, then proceeding in the similar way as discussed above, we may prove

that the inertia of the constraint may be allowed for by adding g of its mass to the
disc.

2. If the constraint is like a simply supported beam, then % of its mass may be
added to the mass of the disc.

2.8. Natural Frequency of Free Transverse
Vibrations Due to a Point Load Acting Over a
Simply Supported Shaft

Consider a shaft AB of length I, carrying a point load W at C which is at a distance
of I, from A and |, from

B, as shown in Fig. 12. A little consideration will show that when the shaft is
deflected and suddenly released, it will make transverse vibrations. The deflection
of the shaft is proportional to the load W and if the beam is deflected beyond the
static equilibrium position then the load will vibrate with simple harmonic motion
(as by a helical spring). If ™ is the static deflection due to load W, then the natural
frequency of the free transverse vibration is

== 9=28% 7 (g = 9.81m/s?)

n2n6

29



Some of the values of the static deflection for the various types of beams and under
various load conditions are given in the following table.

-
—_
L J

“ B
- -

Fig.12. Simply supported beam with a point load.

Example 2.2. A shaft of length 0.75 m, supported freely at the ends, is carrying a
body of mass 90 kg at 0.25 m from one end. Find the natural frequency of
transverse vibration. Assume

E =200 GN/m2 and shaft diameter = 50 mm

Solution. Given: 1 =0.75 m; m = 90 kg; a = AC = 0.25 m; E = 200 GN/m? = 200 x
109 N/m2; d =50 mm =0.05 m

The shaft is shown in Fig.13.

90kg

19

(), 25T e (). 5N ey

— (). 75M  —

Fig. 13

We know that moment of inertia of the shaft,
1=Zd*== (0.05)*m’
64 64
=0.307 x 10° m*
and static deflection at the load point (i.e. at point C),
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_ Wa?p? _ 90x9.81X0.25%%0.52
3EIl 3X200%109%0.307xX107©%0.75

=0.1x 1073m (~b=BC=0.5m)
We know that natural frequency of transverse vibration,
fo= 2222~ 49.85 Hz
Vo T

Example 2.3. A flywheel is mounted on a vertical shaft as shown in Fig.14. The
both ends of the shaft are fixed and its diameter is 50 mm. The flywheel has a mass
of 500 kg. Find the natural frequencies of longitudinal and transverse vibrations.

Pl il o A A

&~ I 4
I
A i 0.9m
|
Co—4———F)
I ! 0.6m
Hiim
Take E = 200 GN/m?. Fig. 14 i SR S-S S -

Solution. Given: d = 50 mm = 0.05 m; m = 500 kg; E = 200 GN/m* = 200 x 10°
N/m?
We know that cross-sectional area of shaft,

A== x d*= = (0.05)*=1.96x 10° m’

4

and moment of inertia of shaft,

== x d*= = (0.05)*=0.307x 10° m*
64 64
Natural frequency of longitudinal vibration
Let m; = Mass of flywheel carried by the length I;.
m —m; = Mass of flywheel carried by length I,.
We know that extension of length 11

W1l1 _ ml.g.ll |
AE AE

.. . (W_Wl) l>
Similarly, compression of length |, = TR
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_ (m-mqy g1, i
AE

Since extension of length |1 must be equal to compression of length 12, therefore
equating equations (i) and (ii),
m1.|1 = (m — m]_) |2
m;x0.9 = (500 —m;) 0.6
=300 — 0.6m; or my = 200 kg

. mig. 14 200 x9.81 x0.9
- Extension of length I;,, 0 = = —
AE 1.96 X 1073 x200 x 10°
=45x10°m

We know that natural frequency of transverse vibration,

f = 0.4985 _  0.4985
n NG V4.5 x10~6

=235 Hz
Natural frequency of transverse vibration
We know that the static deflection for a shaft fixed at both ends and carrying a
point load is given by
__wWadb3 _ 500 x9.81 (0.9)3 (0.6%)
"~ 3EII3 3 X200 x 102 x0.307 X 1076 x 1.53
= 1.24x 10°m .. . . (Substituting W =m.g; a=1;, and b = I,)

. 0.4985
We know that natural frequency of transverse vibration, f,, = -

_ 04985  _

= Toaxi0= 14.24HZ

2.9. Natural Frequency of Free Transverse Vibrations
Due to Uniformly Distributed Load Acting Over a
Simply Supported Shaft

Consider a shaft AB carrying a uniformly distributed load of w per unit length as
shown in Fig.15.

Let y1 = Static deflection at the middle of the shaft,
a;= Amplitude of vibration at the middle of the shaft
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w1l = uniformly distributed load per unit static deflection at

the middle of the shaft = w/y1.
middle of the shatt = wiy,.

|-¢— X —:-l le— BX w/ unit length

B

Extreme

Static deflection curve ¥ positions

/ >
Fig.15. Simply supported shaft carrying a uniformly distributed load.

.

Now, consider a small section of the shaft at a distance x from A and length dx.
Let y = Static deflection at a distance x from A, and
a = Amplitude of its vibration.
Work done on this small section

1
:EX Wl Xal.ax X a

1 w
= = X—Xay X0,=

2 Y1
1 a,
—XWwWX—XaX 0,
2 V1
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Since the maximum potential energy at the extreme position is equal to the amount of work
done to move the beam from the mean position to one of its extreme positions, therefore
Maximum potential energy at the extreme position

1
1
=J‘—><w><i><a.dx (
2 W ... (1)
0 )
Assuming that the shape of the curve of a vibrating shaft is similar to the static deflection
curve of a beam, therefore

L | a

a
=— =Constant, C or ZL-C anda=yC

R 4 M
Substituting these values in equation (#), we have maximum potential energy at the extreme

position

/ /
=J.%>< WXCX_}/.C.dX‘:%X W.CZJ}/.dX .- (i)
0 0

Since the maximum velocity at the mean position is w.a; , where ®is the circular frequency

of vibration, therefore
Maximum kinetic energy at the mean position

! 1
(1 wdx % _ W 222
_-(').EX " (wa) —EX(O xC ‘(';) dx ... ()

.. .(Substituting a= y.C)
We know that the maximum potential energy at the extreme position is equal to the maximum
kinetic energy at the mean position, therefore equating equations (i) and (iif),
!
xw? x C* I_y?‘ .dx
0

1
1 ; v
—X wX ( 'JJ- y.dx = ,“
‘ 0 28

... (4v)

W =— or

When the shaft is a simply supported, then the static deflection at a distance x from

As y=——(x'- 21+ x) (v)
Where w = uniformly distributed load unit length,

E = Young’s modulus for the material of the shaft, and

| = Moment of inertia of the shaft.
* It has been proved in books on ‘Strength of Materials’ that maximum bending
moment at a distance x from A is
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dzy wx?  wilx
(B.M.)maX—EIdXZ— 57 g

Integrating this expression,
dy W wilx?

El—=—-- +q
dx 2x3  2x2
On further integrating,
4 y
Ely=-—"2 _ wl.x* +Gx+ G
2x3x4 2x2x3
4 3
:ﬂ_ﬂ_}_clx.}.cz
24 12

where C| and C, are the constants of integration and may be determined from the given conditions of
the probfem Here
when x="0:p=i07 C,=0
3
1
and when x=L y=0; C = ‘;—4
Substituting the value of C,, we get
“1

(x4 2153 +13x)
24 FT

}/ —
Now integrating the above equation (v) within the limits from 0 to /,

0

/ !
w w
‘l.de:T}[(x“ —2I¢ +Px) dy=——

EI 24EIl 5 4 2
_w _Ii__Zi 15 w X15 wl (v
20FIl5 4 2| 24E 5 120E]
/ I/ 2
4
N !yzm -0[[24151 2 —21x3+13X):| dy

(24EI) J(x8+412x6+]6x2 —alx —4'x* + 21350 dx

1
__ W |2 A PP A Al 2PX°
576 E272 | 9 7 3 8 5 6 i

35



__w |P & F 4F W 2F
“576E2219 7 3 8 5 6

W 3P
576 EX Y 630

Substituting the value in equation (iv) from equations (v#) and (vii), we get circular frequency

due to uniformly distributed load,

- wl® x5765212x630
Bl 120" wx31P

B 24E]X@ D Elg
Natural frequency due to uniformly distributed load,
_o _n* [Eg_= [Elg .
n 275 m w14 2 W]4 S e (IX)

We know that the static deflection of a simply supported shaft due to uniformly distributed
load of w per unit length, is

5 wit EI 5

S = or — =
384 EI Wit 3848

Equation (ix) may be written as

5g 05615

I
A%y e

n

T
5 . . . (Substituting, g = 9.81 m/s?)

2.10. Natural Frequency of Free Transverse Vibrations
of a Shaft Fixed at Both Ends Carrying a Uniformly

Distributed Load

Consider a shaft AB fixed at both ends and carrying a uniformly distributed load of
w per unit length as shown in Fig. 2.16.

We know that the static deflection at a distance x from A is given by

y=%(x4+lzx2—2I y (i)
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w/unit length

7 C ¥ 4

A Y Y Y Y Y ”
A - B

] .

y X z

I / >

£

s 2
Fig.16. Shaft fixed at both carrying a uniformly distributed load.

It has been proved in books on ‘Strength of Materials’ that the bending moment at a distance x from A is
2 2
M=E]d z_ wi +Wx2_w_lx
dé 12 2 2

Integrating this equation,

dy wi? wxr  wix

El—= x+ = +
dx 12 2x3 2x2

G

where C, is the constant of integration. We know that when x=0, %: 0. Therefore C, = 0.
X

wi 2 wx3 wlx2
X+ -

dy
ETY
or dx 12 6 4

Integrating the above equation,

wlz,\'2 wx4 wil ,\*’3 c w12x2+ w,v(4 w]x"

Elyz +———X— = — +C2

12x2 6x4 4 3 24 24 12
where C, is the constant of integration. We know that when x = 0, y = 0. Therefore C, = 0.
or EI._y:i(]zX2+X4—21X3)

24

w 4 22 3
y=——(x +/1°x" - 2Ix

o Y=o )
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Integrating the above equation within limits from 0 to /,

/ 1
L.)’dx A El X Y -21x)dx

Wy w [P £ 2P
5 5 3 4

451[5 3 4 | 24EI|5 3 4
e W i B wi®
" 24EI 30 T20EI
Now integrating y* within the limits from 0 to /,

I 2 1
Jyde: v Jx + 2% =21x°) % dx
24 ET
0 0
o LA J(X +]4X4+4]2X6+2]2X6—41X7—213X5)dX
\24E] 4
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2 1
o J' Bl +6 20 +41X —21°%) dx
0

24 E1

24 E1 9 5 7 8 6

2r i
w £ N 6/2x B 4158 B 2]3X6:|
0

w 3 —19 P gl 4P af w 3 P
- a5 1 B &

24 EI A 24 E1 | 630
We know that )

g I ydx

P O wl’ (24 ED)*x630 _ 504 Elg
o % T20EI w2 P wh

jyz dx

0
oo 2% Ji“lg

wl

and natural frequency;,

,1_ w 504E70 —3573
27( V wi* w]

Since the static deflection of a shaft fixed at both ends and carrying a uniformly
distributed load is
_ wit El _ 1
ST 3gam O Wl4 73849,

£, =3.5737—2

3840
05’671 HZ ... (Substituting, g = 9.81 m/s?)

2.11. Natural Frequency of Free Transverse Vibrations for a Shaft
Subjected to a Number of Point Loads

Consider a shaft AB of negligible mass loaded with point loads W, W,, W3 and W,
etc. in newton’s, as shown in Fig.17. Let my, m,, mz and my etc. be the
corresponding masses in kg. The natural frequency of such a shaft may be found
out by the following two methods:
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W,

|

2 Vi
=2 2
Fig.17. Shaft carrying a number of point loads.

<» 3

> «——3
«—=3

K

1. Energy (or Rayleigh’s) method
Letyy, Vo, Vs, Y4 €tc. be total deflection under loads W1, W2, W3 and W4 etc. as
shown in Fig.17.

We know that maximum potential energy

| ! 1 1

2 2 2 2
—lZm

2 -8y

and maximum Kkinetic energy

1
=§><m, (@) +§xm2 (@.y,)* +oXny (w.y3)? + X my (@yg)? +......

1
=§xm2 [”’1 () +my () + my (y3)2 +my (y)° +]

= EX o’E m.}’z ... (where ® = Circular frequency of vibration)

Equating the maximum kinetic energy to the maximum potential energy, we have

%X(a)z = m.y? =%Zm.g.y

a2 Zm.g.zy= gXmy 5i = gXmy
Zmy > m.y* Tmy’

Natural frequency of transverse vibration,
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S.No. Type of beam Deflection ()
3
1. Cantilever beam with a point load W at the 6= 35 (at the free end)
free end.
w
y v
E : | >
wit
2. Cantilever beam with a uniformly o= 3E (at the free end)
distributed load of w per unit length.
j [w/ unit length
AN YN
1. i i
: . : Wa’b?® .
3. Simply supported beam with an eccentric = 3EI (at the point load)
point load W.
|
—a—sle— b—]
< / >|
3
4. Simply supported beam with a central point 8 =——(at the centre)
48E]
load W. W
fe—i2 —she— 12 —}
I< / >
: . : 5 _wi
b Simply supported beam with a uniformly = EX?] (at the centre)
distributed load of w per unit length.
w/unit length
(\KYQYYWYYYY\
< / >
; , T Wa'b’ .
6. Fixed beam with an eccentric point load W o= (at the point load)
W 3ETI
é s

«—a—ple—b—>
, |

le

€
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mS

7. Fixed beam with a central point load . o= (at the centre)
192ET
w w
T 12 —e—— 2 —>
e l >
wi*
8. Fixed beam with a uniformly distributed = 384 E] (at the centre)

load of w per unit length.

w/ unit length
r g
Y Y Y Y Y Y Y Y Y

! 3

ANARNS
r
VIl

2. Dunkerley’s method
The natural frequency of transverse vibration for a shaft carrying a number of point
loads and uniformly distributed load is obtained from Dunkerley’s empirical

formula. According to this

1 1 1 1 1
= + — + ot
F? n)? | Unp)® | (ny)? ((fng)?

fn = Natural frequency of transverse vibration of the shaft carrying
point loads and uniformly distributed load.
fnl, fn,, fnz, etc. = Natural frequency of transverse vibration of each point load.
fns = Natural frequency of transverse vibration of the uniformly
distributed load (or due to the mass of the shaft).
Now, consider a shaft AB loaded as shown in Fig.18.

Wmn gth
A B
L / ‘:I

Fig.18. Shaft carrying a number of point
loads and a uniformly distributed load.
Let 04, d,, 03, etc. = Static deflection due to the load W, W,, W5 etc. when
considered separately.
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0 s = Static deflection due to the uniformly distributed load or due to the mass of

the shaft.

We know that natural frequency of transverse vibration due to load W;,
_0.4985

frg=——Hz
d1
Similarly, natural frequency of transverse vibration due to load W2,
fn _0.4985
2 = s,
and, natural frequency of transverse vibration due to load
_ 0.4985
W3, fns = 7. HZ
Also natural frequency of transverse vibration due to uniformly distributed load or
0.4985

weight of the shaft, fng = NE HZ
S

Therefore, according to Dunkerley’s empirical formula, the natural frequency of
the whole system,

1 1 1 1 1
= + + + -+
(fn)? (fny)? (fny)? (fnz)? ((fng)?
0, ., _ 02 03 0s

"~ 0.49852 049852 0.49852 0.4985%2

_ as

~ (0. 4985)2 [61 +01 +01 7

0.4985
f, = 75 HZ
Vo, +0; +0; ... o

Notes: 1. when there is no uniformly distributed load or mass of the shaft is
negligible, then a5 =0
0.4985
fn =
J 01 0,403+
2. The value of d4, d,, 05 etc. for a simply supported shaft may be obtained from
_ Wa?b?
the relation 0 =
3EIl
Where d = Static deflection due to load W,
a and b = Distances of the load from the ends,
E = Young’s modulus for the material of the shaft,
| = Moment of inertia of the shaft, and
| = Total length of the shaft.
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Example 2.4. A shaft 50 mm diameter and 3 metres long is simply supported at
the ends and carries three loads of 1000 N, 1500 N and 750 Nat1m, 2 mand 2.5
m from the left support.

The Young's modulus for shaft material is 200 GN/m2. Find the frequency of
transverse vibration

1000 N 1500N 750N
vC vD vE
Al | B
im >
2m -
I: 2.5m 3
3m >
Fig. 19

Solution. Given: d =50 mm =0.05 m; | =3 m, W1 = 1000 N; W2 = 1500 N ;
W3 =750 N; E =200 GN/m2 = 200 x 109 N/m2
The shaft carrying the loads is shown in Fig.19

md*

We know that moment of inertia of the shaft, | = = (0.05)*

=0.307x 107 %m*
and the static deflection due to a point load W,
_ Wa?b?
~ 3El
Static deflection due to a load of 1000 N,
_ 1000x12 x22

17 3%200x109%0.307x10~6%3
=724x103m ...(Herea=1m,andb=2m)
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Similarly, static deflection due to a load of 1500 N,
5 1500 2% x12

g = - ——=10.86x10~ m
3x200x107 x0.307x107" %3

...(Herea=2m,and b=1 m)
and static deflection due to a load of 750 N,

750 (2.5)% (0.5)?

= : —=2.12x10" m
3x200x107 x0.307x107 x3
...(Herea=25m, and b=0.5 m)

3

We know that frequency of transverse vibration,

. __ 04985 0.4985

I e
N1 +82+83  \724%1073 +10.86x1073 +2.12x1073
_04085
= 01422 - .5 Hz Ans.

2.12. Frequency of Free Damped Vibrations (Viscous
Damping)

We have already discussed that the motion of a body is resisted by frictional
forces. In vibrating systems, the effect of friction is referred to as damping. The
damping provided by fluid resistance is known as viscous damping.

We have also discussed that in damped vibrations, the amplitude of the resulting
vibration gradually diminishes. This is due to the reason that a certain amount of
energy is always dissipated to overcome the frictional resistance. The resistance to
the motion of the body is provided partly by the medium in which the vibration
takes place and partly by the internal friction, and in some cases partly by a dash
pot or other external damping device.

Consider a vibrating system, as shown in

Fig.20, in which a mass is suspended from one end of the spiral spring and the
other end of which is fixed. A damper is provided between the mass and the rigid
support.
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Spring
1|r
Mean position {——= m: -——1
dxu
S.XJ c Ff
Position after »-4------=- -
time t ':.._..:.'.1...'.:-
gX
af

Fig. 20. Frequency of free damped vibrations.

Let m = Mass suspended from the spring,
s = Stiffness of the spring,
x = Displacement of the mass from the mean position at time t,
d = Static deflection of the spring
=m.g/s, and
¢ = Damping coefficient or the damping force per unit velocity.
Since in viscous damping, it is assumed that the frictional resistance to the motion
of the body is directly proportional to the speed of the movement, therefore
Damping force or frictional force on the mass acting in opposite direction to the
motion of the mass

d

=C X d—:

Accelerating force on the mass, acting along the motion of the mass
_ md?x

- dtz - -

Accelerating force on the mass, acting along the motion of the mass
= S.X

Therefore the equation of motion becomes

m d?x _ dx
2z - (Cx E+s.x)

(Negative sign indicates that the force opposes the motion)

m d?x d
> +CX =+4+s5.x=0
dt dt

Or
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d?x c

dx S
Or 1c2 +E+E+% Xx=0

This is a differential equation of the second order. Assuming a solution of the form
k t . : . g :
x=e  where k is a constant to be determined. Now the above differential equation reduces to

2
+ C S dx d“x ,
kze[\[ 4L LA keAl +—Xf'kl L 0 . _=k9kt, and _=k2.e]\f
m m dt di?
c S
or K+ —Xk4+—=0 ()
m m
c c : S
—— = | =
m m m
and k= 5

c c ¥ s
s Cug e € A
2m 2m m

The two roots of the equation are
c ¢ ¥ s
k] -1 RNUY] | EEE
Zm 2Zm) m

2
c % S
and kp =——— (—] .
4 2m 2m m

The most general solution of the differential equation (i) with its right

hand side equal to zero has only complementary function and it is given by
Xl = Cleklt + Clekzt . (||)

Where C1 and C2 are two arbitrary constants which are to be determined from the
initial conditions of the motion of the mass.
It may be noted that the roots k; and k, may be real, complex conjugate
(imaginary) or equal. We shall now discuss these three cases as below:
* A system described by this equation is said to be a single degree of freedom
harmonic oscillator with viscous damping.
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1. When the roots are real (overdamping)

: 2

c s

If (—) >—, then the roots &, and k, are real but negative. This is a case of overdamping
2m m

or large damping and the mass moves slowly to the equilibrium position. This motion is known as
aperiodic. When the roots are real, the most general solution of the differential equation is

kit

X= Cif’ Kyt

+ Cze

e (=Y s, L& e ¥ s
2m (Zm m 2m (Zm) m
=Qe +Cye

Note : In actual practice, the overdamped vibrations are avoided.

2. When the roots are complex conjugate (underdamping)

2
s c ; . :
If —>(2—] , then the radical (i.e. the term under the square root) becomes negative.
m m

The two roots k; and k, are then known as complex conjugate. This is a most practical case of
damping and it is known as underdamping or small damping. The two roots are
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and

where i is a Greek letter known as iota and its value is /_| . For the sake of mathematical calcu-
lations, let

63 ) 2
—=a,—=(®,)°: and
2m m

Therefore the two roots may be written as
k =—a+iwg . and kp =—a—iwy
We know that the general solution of a differential equation is
x=Qq et 4+ G, kel = G AR C, elma—i®g)t

=e (G e!®Pa-t +Cy e a4ty (Using €"*" = e" x &) ...(iif)
Now according to Euler’s theorem
e'® = cos0+isin® : and e®

Therefore the equation (#i7) may be written as

=cosB—isin®

x=¢€ Y[ (cosoy.t+isinmy.t0) + C; (cos oy t—isinwy.0) |

=& [(C +C5)cos .t +1(C = Cy)sinw,.0)]

and

where iis a Greek letter known as iota and its value is /_| . For the sake of mathematical calcu-
lations, let

.S 2
—=a —=(0,)" and
2m m

Therefore the two roots may be written as
kg =—a+iong ; and ky=—a-—-ity
We know that the general solution of a differential equation is

x=Q et + G efel = G gratag)t G, et
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—e & (G -t +C,y e ©@al) . (Using " * "= e x € ...(iii)
Now according to Euler’s theorem
e® = cos@+isin® ; and e®
Therefore the equation (7/77) may be written as

=cosB—isin®

x=e Y[ (coswy.t+isinmy.t) + C; (coswy .t —isin oy .0) |

=e (G +Cy)coswy.t+i(C —Cy)sinwy.t) |
Let C]+C2=A, alld j(Cl_CZ)zB

x=¢6 Y (Acosw,.t+ Bsinwy 1) e /AN
Agam let A= Ccos®.and B= Csin6. therefore

B
C=+A*+B° ,and lanezz

Now the equation (iv) becomes
x=¢ ¥ (CcosBcos ®y.t+ CsinBsinw,.t)

=Ce * cos (wy.t—86) svs s

If ¢ is measured from the instant at which the mass m is released after an initial displace-
ment A, then

A=CcosO . . . |Substituting x = A and ¢ = 0 in equation (v)]
and when =0, then4=C
The equation (v) may be written as
x= Ae ? cos 0.t ... (w)
where Wy = (m,) cand a=—

We see from equation (vi), that the motlon of the mass is S|mple harmonic whose
circular damped frequency is wq and the amplitude is Ae ~#¢ which diminishes
exponentially with time as shown in Fig.21. Though the mass eventually returns to
its equilibrium position because of its inertia, yet it overshoots and the oscillations
may take some considerable time to die away,
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Fig. 21 Underdamping or small damping.

We know that the periodic time of vibration,

; _2_ 2T _ 2T

Y s ufie 2.‘\/(0),,)2—&2

and frequency of damped vibration,

2

1 o; 1 2 o 1 15 c
f e — 1 — pep gy LRV (G s
d ( 2n 2n (@) ~—a o [Zm] ... (vii)

Note: When no damper is provided in the system, then ¢ = 0. Therefore the
frequency of the undamped vibration,
fn = — -

2T m
[Substituting ¢ = 0, in equation (vii)]

It is the same as discussed under free vibrations.

3. When the roots are equal (critical damping)

cy2 S :
If (;) =— then the radical becomes zero and the two roots ki and
m
k, are equal. This is a case of critical damping. In other words, the critical
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damping is said to occur when frequency of damped vibration (f) is zero (i.e.
motion is aperiodic). This type of damping is also avoided because the mass moves
back rapidly to its equilibrium position, in the shortest possible time.

For critical damping, equation (ii) may be written as

(s
-—t L
XZ(C1+C2)E Zm :(Cl+Cz)e—m”t [ 2_m— E‘mn}
Thus the motion is again aperiodic. The critical damping coefficient (c ) may be obtained
by substituting ¢, for ¢ in the condition for critical damping, ie.

2
(i] oo o :Zm\/E=2mxo),,
»Zm m m

The critical damping coefficient is the amount of damping required for a system to be
critically damped.

2.13. Damping Factor or Damping Ratio

The ratio of the actual damping coefficient (c) to the critical damping coefficient
(C) is known as damping factor or damping ratio. Mathematically,

: c _ _C .. B
Damping factor T Zmon .. ("7 Ce=2nw,)

The damping factor is the measure of the relative amount of damping in the
existing system with that necessary for the critical damped system.

2.14. Logarithmic Decrement

It is defined as the natural logarithm of the amplitude reduction factor. The
amplitude reduction factor is the ratio of any two successive amplitudes on the
same side of the mean position.

If x; and x, are successive values of the amplitude on the same side of the mean
position, as shown in Fig.22, then amplitude reduction factor,
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X Ae_al at

P = constant
X Ae_a ([+lp)

where ¢, is the period of forced oscillation or the time difference between two consecutive amplitudes.
As per definition, logarithmic decrement,

Szlog[i]:logemp
X2
or d=log, -ﬁ-]:a,[ :axﬂ=A
%) W4 (O)H)Z .
[ 0= ((o,,)z—az]
c
—X21
- Zm
2 " a:_gJ
\/(0),,)2 —( i ] ( 2m
€ x2n

CX 2T

_ 2m _ s
o | o ¢ ] | [ &
o [ 2mw,, y o [ G y

In general, amplitude reduction factor,

X1 _ Xy _ X3 X —_
=23 = I = % = congtant
X2 X3 Xg Xn+1

Logarithmic decrement,

C. =2m.o,)

2TTC

Xn _ _
0= loge (m) = . tp = —'—(CC)Z =2

Example 2.5 A vibrating system consists of a mass of 200 kg, a spring of
stiffness 80 N/mm and a damper with damping coefficient of 800 N/m/s. Determine
the frequency of vibration of the system.

Solution. Given: m = 200 kg; s =80 N/mm =80 x 103 N/m; ¢ = 800 N/m/s
We know that circular frequency of undamped vibrations,
S 80x103
W, = —= |[———=20radls
m 200
And circular frequency of damped vibrations,
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wy = /(w,) 2—a? :\/(Wn)Z—(i)z ......... (" a=c/2m)

= \/(20) 2 — (22x200) 2 =19.9radls

=~ Frequency of vibration of the system,
fy=wq/2m =19.9/2r  3.17 Hz Ans,

Example 2.6. The following data are given for a vibratory system with viscous
damping:

Mass = 2.5 kg; spring constant = 3 N/mm and the amplitude decreases to 0.25 of
the initial value after five consecutive cycles.

Determine the damping coefficient of the damper in the system.

Solution. Given: m = 2.5 kg; s =3 N/mm = 3000 N/m; xs = 0.25 X,

We know that natural circular frequency of vibration,

3000
®, = "i = e il
m 2.5

Let ¢ = Damping coefficient of the damper in N/m/s,
x; = Initial amplitude, and
x; = Final amplitude after five consecutive cycles = 0.25 x; ...(Given)

We know that

or - = |-
% L ¥ H X5 5 X2
1/5 1/5
ﬁ_[i] _[ X ) — (@)5 ~1.32
Xy Xg 0.25x
We know that
loge(ﬁ]:axL
12 (0,)% —a®
2m 2
1.32) =a X 2 =a X2 1200-
log.(1.32) =a TGiehT-a?) or0.2776 =a m/ (1200-3°)
. . 5a?
Squaring both sides,  0.077 = 39—az or 9.24 - 0.077a?
1200— a
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=39.5a°; a’=2.3350ra=1.53
We know that a=C/2morC=aX 2m
=153X2X 25 =7.65N/m/s

Example 2.7. An instrument vibrates with a frequency of 1 Hz when there is no
damping.
When the damping is provided, the frequency of damped vibrations was observed
to be 0.9 Hz.
Find 1. The damping factor, and 2. Logarithmic decrement.
Solution. Given: f,=1 Hz; f;=0.9 Hz
1. Damping factor
Let m = Mass of the instrument in kg,
¢ = Damping coefficient or damping force per unit velocity in N/m/s, and
c.= Critical damping coefficient in
N/ml/s.
We know that natural circular frequency of undamped vibrations,
w, =21 f,=2nx1 = 6.284 rad/s
And circular frequency of damped vibrations,
wq = 2nxfd = 2 X 0.9 = 5.66 rad/s
We also know that circular frequency of damped vibrations (wd),
We also know that circular frequency of damped vibrations (®,),

5.66 = y/(0,)2 — a2 =4/ (6.284)% — 22

Squaring both sides,
(5.66)? = (6.284)% — 2% or 32 = 39.5 - &
- #<15 or a=274
We know that, a=c2m or c=ax2m=2.7T4 x 2m = 5.48 m N/m/s

Damping factor,
c/c. =5.48m/12.568 m = 0.436 Ans.

2. Logarithmic decrement

We know that logarithmic decrement,

2nc 2nx5.48 m 344

8 . _
Je?-¢  Juzs68m?-(5.48m? 113

=3.04 Ans.
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Example 2.8. The measurements on a mechanical vibrating system show that it
has a mass of 8 kg and that the springs can be combined to give an equivalent
spring of stiffness

5.4 N/mm. If the vibrating system have a dashpot attached which exerts a force of
40 N when the mass has a velocity of 1 m/s, find: 1. critical damping coefficient, 2.
damping factor, 3. Logarithmic decrement, and 4. ratio of two consecutive

amplitudes.
Solution. Given: m = 8 kg; s = 5.4 N/mm = 5400 N/m
Since the force exerted by dashpot is 40 N, and the mass has a velocity of 1 m/s,

therefore
Damping coefficient (actual), c =40 N/m/s
1. Critical damping coefficient

We know that critical damping coefficient,
9400
¢ =2mo, = ZIHX\/% =2x8 JT =416 N/m/s Ans
2. Damping factor

We know that damping factor

c 40
RPSIT = 0.096 Ans.

c

3. Logarithmic decrement
We know that logarithmic decrement,

5 2nec 2mx 40 0.6 A
= = = (0.6 Ans.
Vie)?-c*  |416)> -0
4. Ratio of two consecutive amplitudes
Let x, and x_, = Magnitude of two consecutive amplitudes,

We know that logarithmic decrement,

8=loge[ n ] or 2n__ 8 _ (2.7)%6 =1.82 Ans.

We know that log, (%) =a.t, orlog,( al )
2

0.2x,
=ax 0.67
log,0.5=0.67a0or1.61=0.67aora=24.....(~ log5, = 1.61)
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We also know that frequency of free damped vibration,

1 22
fy= (w,)"—a
4 om )
or ((z)n)2 = (2mx fd)2 +a° . . . (By squaring and arranging)

= (2nx1.5)% +(2.4)2 =94.6
®, =9.726 rad/s

We know that frequency of undamped vibration,
_ o, 9.726

n= o o 1.55 Hz Ans.

Example 2.9. A coil of spring stiffness 4 N/mm supports vertically a mass
of 20 kg at the free end. The motion is resisted by the oil dashpot. It is found that
the amplitude at the beginning of the fourth cycle is 0.8 times the amplitude of the
previous vibration. Determine the damping force per unit velocity. Also find the
ratio of the frequency of damped and undamped vibrations.

Solution. Given: s =4 N/mm = 4000 N/m; m = 20 kg

Damping force per unit velocity

Let c = Damping force in newtons per unit velocity i.e. in N/m/s

X» = Amplitude at the beginning of the third cycle,

Xn+1 = Amplitude at the beginning of the fourth cycle = 0.8 x, ... (Given)

We know that natural circular frequency of motion,

o, = fi = /M —14.14 rad/s
m 20
2T

and log,.  Hn_ = ax
x, +1 \/((.)")2 2
X 27
or loge{—” ]: ax
0.8,\’” \/(14.14)2—82
21 i 2T

log.1.25=ax

——= or 0228=ax———
\V200-a V200 — 42

Squaring both sides
a’x4m? 39.5xa?
0.05 = =
200—a%? 200—-a?
a? = 10/39.5a’°=0.25 or a = 0.5
We know that a = ¢/2m, then c = ax2m = 0.5x2x20 = 20 N/m/s
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Ratio of the frequencies
w
Let f 1 = Frequency of damped vibrations = Py
w
f 2 =Frequency of undamped vibrations = S

2T
[ _wa . 2m _wq_ | (@n)?-a?
fn, 2m wn  wn wn

:\/(14.14)2—(0.5)2 ( w, = \/(Wn) 2 a2) =0.999

14.14

Example 2.10. A machine of mass 75 kg is mounted on springs and is fitted with a
dashpot to damp out vibrations. There are three springs each of stiffness 10 N/mm
and it is found that the amplitude of vibration diminishes from 38.4 mm to 6.4 mm
in two complete oscillations.
Assuming that the damping force varies as the velocity, determine: 1. the
resistance of the dashpot at unit velocity; 2. the ratio of the frequency of the
damped vibration to the frequency of the undamped vibration; and 3. the periodic
time of the damped vibration.
Solution. Given: m =75 kg; s = 10 N/mm = 10 x10% N/m; x; = 38.4 mm = 0.0384
m; X3 = 6.4 mm = 0.0064 m
Since the stiffness of each spring is 10 x 10° N/m and there are 3 springs, therefore
total stiffness,

s = 3x10x10°% = 30x10°> N/m
We know that natural circular frequency of motion,

S 30%x103
Wp= |— = = 20rad/s
m 75

1. Resistance of the dashpot at unit velocity
Let ¢c = Resistance of the dashpot in newtons at unit velocity i.e. in
N/m/s,

X, = Amplitude after one complete oscillation in metres, and
X3 = Amplitude after two complete oscillations in metres.
We know that

O S EE N - WS- RV SRR SRV -G T
X2 X3 X3 X2 X3 X2 X2 X2

58



Or X1 — lﬂ] 1/2 — (—0'0384) 1/2= 245
Xy X3 0.0064 '
We also know that

| X1 21
Oge - x_z —aX ,—(wn) 2_a2
. 21T _ __ax2m
log 2.45 = aX JGo) a2 _0'8951_\/ﬁ
__a®x39.5 _ :
or0.8 = 00—z et (Squaring both sides)

a’=794o0ra=2.8
We know thata=c/2m
~c=ax2m=2.8x2x75=420 N/m/s Ans.

2. Ratio of the frequency of the damped vibration to the frequency of undamped vibration

. . Q)
Let £,; = Frequency of damped vibration = —%
nl q A P 2

T

o)

f,», = Frequency of undamped vibration = o

g 21 _©g _ J)2-2% (202 - (2.8

= =0.99 Ans.
fp, 2 o, 0, ®, 20
3. Periodic time of damped vibration
We know that periodic time of damped vibration
2n 2n 2n
TR = =0.32 s Ans.

- oy J(@,)? - 22 —\/(20)2—(2.8)2

Example 2.11. The mass of a single degree damped vibrating system is 7.5 kg and
makes 24 free oscillations in 14 seconds when disturbed from its equilibrium
position. The amplitude of vibration reduces to 0.25 of its initial value after five
oscillations. Determine: 1. stiffness of the spring, 2. logarithmic decrement, and 3.
damping factor, i.e. the ratio of the system damping to critical damping.

Solution. Given: m = 7.5 kg
Since 24 oscillations are made in 14 seconds, therefore frequency of free
vibrations,
fn=24/14=1.7
and w, = 2.t X fn=27x1.7 =10.7 rad/s
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1. Stiffness of the spring
Let s = Stiffness of the spring in N/m.
We know that (w,) 2 = s/mors= (w,)2m = (10.7)*x7.5 =860 N/m Ans.
2. Logarithmic decrement
Let x1 = Initial amplitude,
X6 = Final amplitude after five oscillations = 0.25 x1 ...

(Given)
x_1=x_1xﬂxx_3xx_4xx_5= [x_1]5
X6 X2 X3 X4 X5 X6 X2
B x_l_x_z_x_3_x_4_"_5]
.......... - N - v N
1/5 1/5
A A 4 1/5
r === =|— =04)"7=132
? X, [xﬁ] [0.25)(1] &
We know that logarithmic decrement,
D= loge(ﬁ ]: log,1.32 = 0.28 Ans.
X2

3. Damping factor
Let ¢ = Damping coefficient for the actual system, and
¢, = Damping coefficient for the critical damped system.

We know that logarithmic decrement (§),

0.28 = axim ax2m
Jo2-at J10m?2-a
2
a“x39.5
0.0784 = m . . . (Squaring both sides)
8.977 - 00784 £=3952 or a=0227T or a=0476
We know that a=cl/2m or c=ax2m=0476x 2 x 7.5="17.2 N/m/s Ans.
and ¢, =2mo, =2x7.5x10.7 = 160.5 N/m/s Ans.

Damnine factor = c/e = 7.2/ 160.5 = 0.045 Ans.
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