

LANDMARK UNIVERSITY

COURSE NOTE

COLLEGE: COLLEGE OF SCIENCE AND ENGINEERING
DEPARTMENT: COMPUTER SCIENCE

Course:

Course Code: CSC 122
Course Title: Introduction to Problem Solving
Course Unit: 2
Course Status: Compulsory

COURSE DESCRIPTION
The purpose of this course is to introduce first year C o m p u t e r Science
students to high level language using QBASIC programming Language.
Attention is paid to understanding of programming concepts and building
students’ skills in programming. It is assumed that students possess little or
no prior knowledge of programming, the course therefore begins with a
comprehensive study of programming tools such as algorithm (pseudocode
and flowchart) and decision table. The knowledge of algorithm is central to
the learning of any programming language. Concepts such as control flow,
sequence, iteration, decision and procession were covered in depth with
examples. QBASIC programming symbols, keywords, data types, operators,
function and control structure are taught and the knowledge used to solve
problems from the very simple to complex ones.

COURSE JUSTIFICATION
QBASIC is a procedural language and easy to understand especially
for beginners.

COURSE OBJECTIVES
At the end of this course, students should be able to:

Ø Demonstrate good understanding of algorithm
Ø Understand basic programming concepts and techniques
Ø Provide algorithmic solution to programming tasks
Ø Provide interpretation to programs written by others
Ø Design, develop debug and implement program in QBASIC

COURSE CONTENTS
Programming Tools: Algorithm; Components of algorithm, different ways of
presenting algorithms. Flowcharting of algorithm. Decision table.
Pseudocode; Pseudocode statement for input, output, iteration, decision and
procession. Arithmetic, Relational and Logical Operations in Pseudocode, use
of sub process in Pseudocode. Introduction to QBasic programming: Symbols,
keywords, Identifiers, Data types, operators, Control structure, Function,
Procedures. Arrays: 1-D and Multi-dimensional arrays.

COURSE REQUIREMENT
It is assumed that students taking this course possess little or no prior
knowledge in programming. It is expected however that students exhibit
willingness and aptitude for learning.

Method of grading
S/N GRADING SCORE(%)

1.
Continuous Assessments

• C.AI
• C.AII (Mid-Semester Test)

7%

15%
8%

• C.AIII
2. Assignment

 3. Practical (Laboratory work)/ Case
Studies

4. Final Examination 70%
5. Total 100

Course Delivery Strategies:
Lectures are delivered via electronic media (e-learning platform and power
point presentations). Students are also encouraged to work with our
programmers and avail themselves of laboratory facilities for practical work.
Students are expected to demonstrate their understanding of concepts by
completing given tasks in class and submitting assignments as at when due.

Resources used/Reading Materials

Ø Reuben Aremu. Manuscript on Introduction to Problem Solving
(Unpublished)

Ø Behrouz and Firouz (2008). Foundations of Computer Science.
Cengage Learning. ISBN-13:978-1-84480-700-0

Ø Okeyinka A.E. (1998). Introduction to computer technology. ISBN : 978-
31933-5-X

Ø Peter B. (1982). Further Computer Programming in BASIC. Thomas Nelson
ans sons ISBN 0-17-431266-0

1.0. INTRODUCTION

Regardless of the area of study, computer science is all about solving problems
with computers. The problems that we want to solve can come from any real-world
problem or perhaps even from the abstract world. We need to have a standard
systematic approach to solving problems. Since we will be using computers to solve
problems, it is important to first understand the computer’s information
processing model.

Figure 1 below assumes a single CPU (Central Processing Unit). Many computers
today have multiple CPUs, so you can imagine the model duplicated multiple times
within the computer.

Figure 1: A typical single CPU computer processes information.

Problems are solved when the computer accepts some kind of user input (via
keyboard/mouse, game control movements), then process the input and produce some
kind of output (e.g., images, test, sound). Sometimes the incoming and outgoing data
may be in the form of hard drives or network devices.

In order to apply the above model (Figure 1) to problem solving, it is assumed that
some kind of input information are given to work with in order to produce some
desired output solution. However, the above model is quite simplified. For larger
and more complex problems, there is the need to iterate (i.e., repeat) the
input/process/output stages multiple times in sequence, producing intermediate
results along the way that solve part of a given problem, but not necessarily the

INPUT PROCESSING OUTPUT

Printer Speaker Monitor

whole problem. For simple computations, the above model is sufficient. It is the
“problem solving” part of the process that is the interesting part, so we’ll break
this down a little.

2.0. PROBLEM SOLVING

Problem solving can be viewed as a six (6) step activity as stated below:

1. Understand the Problem
2. Formulate a Model
3. Develop an Algorithm
4. Write the Program
5. Test the Program
6. Evaluate the Solution

The problem is easily solved by simply getting the input, computing something and
producing the output. Let us now examine the 6 steps to problem solving.

2.1. Understand the Problem:

It sounds strange, but the first step of solving any problem is to make sure that
you understand the problem that you are trying to solve.

Defining the problem is the first step towards a problem solution. A systematic
approach to problem definition, leads to a good understanding of the problem.
Here is a tried and tested method for defining (or specifying) any given problem:

Divide the problem into three (3) separate components:

a. input or source data provided
b. processing - a list of what actions are to be performed in transforming input

to output
c. output or end result required

These three components can further be refined as follows:

a. Input or source data provided:
i. What input data/information is available?
ii. What does it represent?
iii. What format is it in?
iv. Is anything missing?
v. Do I have everything that I need?

b. Processing

i. What am I going to have to compute?

c. Output or end result required:
i. What output information am I trying to produce?
ii. What do I want the result to look like ... text, a picture, a graph …?

Consider a simple example of how the input/process/output works on a simple
problem:

Example: Calculate the average grade for all students in a class.

1. Input: Get all the grades ... perhaps by typing them in via the keyboard or by

reading them from a USB flash drive or hard disk.

2. Process: Add them all up and compute the average grade.

3. Output: Output the answer to either the monitor, to the printer, to the USB

flash drive or hard disk ... or a combination of any of these devices.

Finally, we should understand the kind of processing that needs to be performed
on the data. This leads to the next step.

2.2. Formulate a Model:

Now there is the need to understand the processing part of the problem. Many
problems break down into smaller problems that require some kind of simple
mathematical computations in order to process the data. In our example, we are
going to compute the average of the incoming grades. So, we need to know the model
(or formula) for computing the average of a bunch of numbers. If there is no such
“formula”, we need to develop one. Often, however, the problem breaks down into
simple computations that we well understand. Sometimes, we can look up certain
formulas in a book or online if we get stuck.

In order to come up with a model, we need to fully understand the information
available to us. Assuming that the input data is a bunch of integers or real
numbers nxxx ,..,, 21 representing a grade percentage, we can use the following
computational model:

n

xxx
Average n)..(

1 21 +++
=

where the result will be a number from 0 to 100. That is very straight forward
(assuming that we knew the formula for computing the average of a bunch of
numbers). However, this approach will not work if the input data is a set of letter
grades like B-, C, A+, F, D-, etc. because we cannot perform addition and division on
the letters. This problem solving step must figure out a way to produce an average
from such letters. Thinking is required. After some thought, we may decide to
assign an integer number to the incoming letters as follows:

A+ = 12
A = 11
B+ = 9
B = 6
C+ = 6
C = 5
D+ = 3
D = 2
F= 0

If we assume that these newly assigned grade numbers are nyyy ,..., 21 then we can use
the following computational model:

n

yyy
Average n)..(

2 21 +++
=

where the result will be a number from 0 to 12. As for the output, if we want it as
a percentage, then we can use either Average1 directly or use (Average2 / 12),
depending on the input that we had originally. If we wanted a letter grade as
output, then we would have to use (Average1/100*12) or (Average1*0.12) or
Average2 and then map that to some kind of “lookup table” that allows us to look
up a grade letter according to a number from 0 to 12. Do you understand this step
in the problems solving process? It is all about figuring out how you will make use
of the available data to compute an answer.

2.3. Develop an Algorithm:

Now that we understand the problem and have formulated a model, it is time to
come up with a precise plan of what we want the computer to do by developing an
algorithm to solve the problem.

The word algorithm is derived from the phonetic pronunciation of the last name of
Abu Ja'far Mohammed ibn Musa al-Khowarizmi, who was an Arabic mathematician who
invented a set of rules for performing the four basic arithmetic operations
(addition, subtraction, multiplication and division) on decimal numbers.

An algorithm is a well-defined computational procedure consisting of a finite set
of unambiguous rules (instructions) which specify a finite sequence of operations
that takes some values or set of values, as input, and produces some values or set
of values, as output. In other word, an algorithm is a procedure that accepts data,
manipulate them following the prescribed steps, so as to eventually fill the
required unknown with the desired value(s).

2.3.1. Properties of an Algorithm:

i. An algorithm must have at least an input data item
ii. It must be precise and unambiguous

An algorithm must be precisely and unambiguously described, so that there
remains no uncertainty. An instruction that says “shuffle the deck of card”
may make sense to some of us, but the machine will not have a clue on how to
execute it, unless the detail steps are described. An instruction that says
“lift the restriction” will cause much puzzlement even to the human readers

iii. It must give the correct solution in all cases
This means that it must solve every instance of the problem. For example, a
program that computes the area of a rectangle should work on all possible
dimensions of the rectangle, within the limits of the programming language
and the machine

iv. It must eventually end.
The ultimate purpose of an algorithm is to solve a problem. If the program
does not stop when executed, we will not be able to get any result from it.
Therefore, an algorithm must contain a finite number of steps in its
execution. Note that an algorithm that merely contains a finite number of
steps may not terminate during execution, due to the presence of ‘infinite
loop”.

2.3.2. Algorithms and Humans

§ Algorithms are not a natural way of stating a problem’s solution, because we
do not normally state our plan of action.

§ We tend to execute as we think about the problem. Hence, there are inherent
difficulties when writing an algorithm.

§ We normally tailor our plans of action to the particular problem at hand and
not to a general problem (i.e. a near-sighted approach to problem solving)

§ We usually do not write out our plan, because we are usually unaware of the
basic ideas we use to formulate the plan. We hardly think about it – we just
do it.

§ Computer programmers need to adopt a scientific approach to problem
solving, i.e. writing algorithms that are comprehensive and precise.

§ We need to be aware of the assumptions we make and of the initial conditions.
§ Be careful not to overlook a step in the procedure just because it seems

obvious.
§ Remember, machines do not have judgment, intuition or common sense!

2.3.3. Developing an Algorithm

§ Understand the problem (Do problem by hand. Note the steps)
§ Devise a plan (look for familiarity and patterns)
§ Carry out the plan (trace)
§ Review the plan (refinement)

2.3.4. Understanding the Algorithm

Possibly the simplest and easiest method to understand the steps in an algorithm,
is by using the flowchart method. This algorithm is composed of block symbols to
represent each step in the solution process as well as the directed paths of each
step. The most common block symbols are as displayed in Table 1:

 Table 1 Flowchart Symbol Representation
Symbol Name Function
 Terminal Indicates the starting

or ending of the
program, process, or
interrupt program.

 Process

Indicates any type of
internal operation
inside the Processor or
Memory

 Input/output

Used for any Input /
Output (I/O) operation.
Indicates that the
computer is to obtain
data
or output results

 Decision

Used to ask a question
that can
be answered in a binary
format (Yes/No,
True/False)

 Flow lines Shows direction of
flow.

 Hybrid Denotes an output
operation

 Predefined Process.

Used to invoke a
subroutine or an
interrupt program

 Connector Allows the flowchart
to be drawn without
intersecting lines or
without a reverse flow

There are many other block symbols, used in flow charting, but we will restrict
our usage to the symbols described table 1. They are sufficient to illustrate the
steps in developing solutions to the simple problems we will be dealing with.

2.3.5. The Algorithmic Language

During development of an algorithm, the language gradually progresses from
English towards a programming language notation. An intermediate notation called
pseudo-code is commonly used to express algorithms.

2.3.6. Algorithmic Structure

Every algorithm should have the following sections, in the stated order:

Header: Algorithm’s name or title.
Declaration: A brief description of algorithm and variables. i.e. a statement

of the purpose.
Body: Sequence of steps
Terminator: End statement

2.3.7. How to write Pseudocode

An algorithm can be written in pseudocode using six (6) basic computer operations:
A computer can receive information.
Typical pseudocode instructions to receive information are:
 Read name;
 Get name;
 Read number1, number2;

A computer can output (print) information.
Typical pseudocode instructions are:
 Print name
 Write "The average is", ave

A computer can perform arithmetic operation
Typical pseudocode instructions:
 Add number to total, or
 Total = Total + Number
 Ave = sum/total

A computer can assign a value to a piece of data:
e.g. to assign/give data an initial value:
 Initialize total to zero
 Set count to 0
To assign a computed value:
 Total = Price + Tax

A computer can compare two (2) pieces of information and select one of two
alternative actions.
Typical pseudocode e.g.
 IF number < 0 then
 add 1 to neg_number
 ELSE
 add one to positive number
 end-if

A computer can repeat a group of actions.
Typical pseudocode e.g.
 Repeat until total = 50
 read number
 write number
 add 1 to total
 end-repeat
 OR

 while total < = 50 do:
 read number
 write number
 end-while

Now, let’s review the plan and write out algorithm for the average problem in the
specified format:

Algorithm Average
This algorithm reads a list of numbers and computes their average.

Let: SUM be the total of the numbers read
 NUM be the number of items in the list
 AVE be the average of all the numbers
 Set SUM to 0,
 Set COUNTER to 0. (i.e. initialize variables)

While (COUNTER < NUM)
do:

 Read number;

// (i.e. add number to SUM, storing result in SUM)

 SUM = SUM + number

// (i.e. add 1 to COUNTER, storing result in COUNTER)
COUNTER = COUNTER + 1;

 end-while

 if COUNTER = 0 then
 AVE = 0
 else
 AVE = SUM/ NUM
 Stop.

EXAMPLES OF FLOWCHARTS, ALGORITHM AND PSEUDOCODES

Design an algorithm and the corresponding flowchart for adding the test scores as
given below:
26, 49, 98, 87, 62, 75

Algorithm
addingTestScores

1. Start
2. Sum = 0
3. Get the first testscore
4. Add first testscore to sum
5. Get the second testscore
6. Add to sum
7. Get the third testscore
8. Add to sum
9. Get the Forth testscore
10. Add to sum
11. Get the fifth testscore
12. Add to sum
13. Get the sixth testscore
14. Add to sum
15. Output the sum
16. Stop.

b) The corresponding flowchart is as follows:

The algorithm and the flowchart above illustrate the steps for solving the
problem of adding six testscores. Where one testscore is added to sum at a time.
Both the algorithm and flowchart should always have a Start step at the
beginning of the algorithm or flowchart and at least one stop step at the end, or
anywhere in the algorithm or flowchart. Since we want the sum of six testscore,
then we should have a container for the resulting sum. In this example, the
container is called sum and we make sure that sum should start with a zero value
by step 2.

Example 2
Write an algorithm and draw a flowchart to convert the length in feet to
centimeter.

Pseudocode:
• Input the length in feet (Lft)
• Calculate the length in cm (Lcm) by multiplying LFT with
• Print length in cm (LCM)

Algorithm:

Step 1: Input Lft
Step 2: Lcm = Lft x 30
Step 3: Print Lcm

Flowchart

Example 3
Write an algorithm to determine a student’s final grade and indicate whether it is
pass or fail. The final grade is calculated as the average of four marks.

Pseudocode:

• Input a set of 4 marks
• Calculate their average by summing and dividing by 4
• IF average is below 50

Print “FAIL”
ELSE

Print “PASS”

Algorithm

Step 1: Input M1,M2,M3,M4
Step 2: GRADE (M1+M2+M3+M4)/4
Step 3: IF (GRADE < 50) then

Print “FAIL”
ELSE

Print “PASS”
ENDIF

Flowchart

Example 4

Write an algorithm and draw a flowchart that will read the two sides of a
rectangle and calculate its area.

Pseudocode to read two sides of a rectangle and calculate its area:

• Input the width (W) and Length (L) of a rectangle

Lcm = Lft * 30

Input Lft

START

Print Lcm

STOP

• Calculate the area (A) by multiplying L with W
• Print A

Flowchart to read two sides of a rectangle and calculate its area:

Algorithm to read two sides of a rectangle and calculate its area:

• Step 1: Input W,L
• Step 2: A = L x W
• Step 3: Print A

Example 5

Write an algorithm and draw a flowchart that will calculate the roots of a
quadratic equation
ax2 + bx + c = 0

• Hint: d = sqrt (b2 - 4ac), and the roots are: x1 = (–b + d)/2a and x2 = (–b – d)/2a

Pseudocode to calculate the roots of a quadratic equation:

• Input the coefficients (a, b, c) of the quadratic equation
• While (a != 0)

Calculate d
• Calculate x1
• Calculate x2
• Print x1 and x2

Algorithm to calculate the roots of a Quadratic Equation:

• Step 1: input a, b, c
• Step 2: WHILE (a != 0)
 {
Step 3: d = b*b – 4*a*c
Step 4: IF (d > 0)

{
x1 = -b + (sqrt(d))/(2*a)
x2 = -b - (sqrt(d))/(2*a)
print x1, x2

}
Step 5: ELSEIF (d = = 0)

{
x1 = -b + (sqrt(d))/(2*a)
Print “Equal Roots “

input
W, L

START

 A = L *W

STOP

 Print
 A

x2 = x1
print x1, x2

}
Step 6 ELSE

print “ Complex Root ”
ENDIF

 ENDWHILE

Flowchart to calculate the roots of a Quadratic Equation:

Algorithm to calculate the average of a list of n numbers

Input the value of n

//Initialize variable sum to zero
Sum←0

//Initialize a counter j to 1
j←1
Input the next number on the list, call it x
Add x to sum i.e. sum←sum+x
Increment j by 1 i.e. j←j+1

While j≤n

Input the next number on the list, call it x
Add x to sum i.e. sum←sum+x
Increment j by 1 i.e. j←j+1

End While
average ← sum/n
Print average

STOP

Flowchart to calculate the average of a list of n numbers

Algorithm to divide two integers A and B by method of successive subtraction

Let: A be the dividend
 B be the divisor

 Input A, B
 Result←0
 While A≥B
 A = A-B
 Result ←Result+1
 End while
 Print Result
 STOP

Algorithm to multiply two integers A and B by method of successive addition

Input A and B

//Initialize variables
Result←0
Counter←0

While counter ≤ B
 Result ←Result+A

 Counter←counter+1
End while
Print Result
STOP

Algorithm to swap the content of two variables A and B for example, if A = 40
and B = 60, then your algorithm should output the following results A = 60, B =
40

Input A,B
Create an extra variable, C
 C←A
 A←B
 B←C
Print A,B
STOP

Arrays
An array is a set of data items all of the same type and stored together in the
memory; all the data items in an array can therefore be referred to by a single
identifier. Array elements can be referenced by use of a subscripted variable. The
number of data items in an array is fixed. An array can be one-dimensional or multi-
dimensional. E.g.

X(1), X(2), X(3), … ,X(n)

X(1) X(2) X(3) … X(4)

A two-dimensional array however is made up of rows and columns of data. A two-
dimensional array of four rows and three columns can be depicted as shown below

TABLE
(1,1)

TABLE
(1,2)

TABLE
(1,3)

TABLE
(2,1)

TABLE
(2,2)

TABLE
(2,3)

TABLE
(3,1)

TABLE
(3,2)

TABLE
(3,3)

TABLE
(4,1)

TABLE
(4,2)

TABLE
(4,3)

A multi-dimensional array is specified by giving more than a pair of dimensional
limits in the description of the array

Examples

1. Algorithm to determine the smallest number in a list of n numbers

Input n, the number of elements in the list
Input all the numbers into array x
Set smallest to first element in the array i.e. Smallest ← x[1]
Set counter j to 2 i.e j ← 2
While j≤n

If x[j] < smallest,
mallest ← x[j]

End If
j←j+1

End While
Print smallest
STOP

2. Write an algorithm to scan a linear array of 100 elements for negative number,
print the number of all such elements found and compute the product of all
such number, print it if positive, or print an appropriate message if negative

Let: P be product of all negative numbers
 C be number of negative number in the array
Create A(100)
i = 1, p = 1, c = 0
WHILE i <= 100
 Read A(i)
 IF A(i) < 0 THEN
 p = p * A(i)
 c = c + 1
 END IF
 i = i + 1
End While
IF p > 0
 PRINT P, C
ELSE
 print P, C
 PRINT “P is negative"
END IF
END

3. The grades obtained by students in eight courses are to be supplied as input to
the computer in addition to the credit unit of the courses. Design an algorithm
to compute the Grade Point Average (GPA) of the student. Assume the following:
A=5points, B=4points, C=3points, D=2points and F=0point.

Set Totalpoint←0, TotalUnit←0

Set counter j to 1 i.e. j←1
While j≤8
 Input grade[j] and unit[j]
 TotalUnit←TotalUnit+Unit[j]
 If grade[j] = ‘A’ then

Totalpoint←TotalUnit+5*unit[j]
 Else if grade[j] = ‘B’ then Totalpoint←TotalUnit+4*unit[j]
 Else if grade[j] = ‘C’ then Totalpoint←TotalUnit+3*unit[j]
 Else if grade[j] = ‘D’ then Totalpoint←TotalUnit+2*unit[j]
 Else if grade[j] = ‘F’ then Totalpoint←TotalUnit+0*unit[j]
 End If
 j←j+1
End while
GPA←Totalpoint/TotalUnit
Print GPA
STOP

2.3.8. DECISION TABLE
A decision table, just like flowchart is a programming and system analysis tool. It
can be used to define complex programming logic.

Decision Table format
Table Heading Decision

rules

Condition
stub

Condition

Action stub Action entries

The table is divided into four major parts:

i. Condition stub
ii. Condition entries

iii. Action stub
iv. Action entries

Apart from these, there is also a portion reserved for table heading and another
for decision rules. The condition stub will contain conditions to be tested while
the action stub will contain actions to be taken after the examination of each rule.
The rule itself is a combination of answers to questions asked in the condition
stub. If three conditions are entered in the condition stub, then we will expect 8
rules i.e. 23. In general, if there are n conditions, there will be 2n rules. However,
some of the rules may be irrelevant or redundant and hence such rules are simply
ignored. Realistically speaking then, there will always be less than or equal to 2n

rules for n conditions.
The condition entries are responses to the questions asked under the condition
stub and they are usually answered as a ‘YES’ or a ‘NO’.
The action entries contain column by column, the action actually taken in response
to the rule in the column. X is put against each action in response to rule.

Examples

1. Candidates are accepted for employment if their qualifications and
references are satisfactory and they pass the interview, when a candidate’s
references or interview (but not both) is unsatisfactory, but the
qualifications are satisfactory, he is offered a job for a probationary period.

In all other circumstances, his application is rejected. Construct an
appropriate decision table for this policy.

Employment
policy

1 2 3 4 5 6 7 8

Qualification
OK?
References OK?
Interview OK?

Y Y Y Y N N N N
Y Y N N Y N Y N
Y N Y N Y Y N N

Offer a job
Probationary
offer
Reject

X
 X X
 X X X X X

2. A finance company applies the following rules in granting loan to its

employees: An application for loan should be submitted. The income level of
the loan seeker is then checked. If the income is okay and the loan seeker has
no further debt with the company, then the application is accepted, otherwise
further investigation is carried out. However, if the income is not okay, but
the loan seeker has a guarantor, then his application is accepted, otherwise,
it is rejected. Draw a decision table representing this policy.

2.4. PROGRAMMING WITH QBASIC

INTRODUCTION
BASIC stands for Beginner’s All Purpose Symbolic Instruction Code. Invented in
1963, at Dartmouth College, by mathematicians, John George Kemeny and Tom
Kurtzas.
BASIC is an interpreter which means it reads every line, translates it and lets the
computer execute it before reading another. Each instruction starts with a line
number.

Microsoft’s Visual Basic language was introduced in the early 1990s to simplify
the development of Microsoft Windows applications and is one of the world’s most
popular programming languages.
Microsoft’s latest development tools are part of its corporate-wide strategy for
integrating the Internet and the web into computer applications. This strategy is
implemented in Microsoft’s .NET platform, which provides developers with the
capabilities they need to create and run computer applications that can execute on
computers distributed across the Internet. Microsoft’s three primary programming
languages are Visual Basic .NET (based on the original BASIC), Visual C++ .NET
(based on C++) and C# (based on C++ and Java, and developed expressly for the .NET
platform). Developers using .NET can write software components in the language
they are most familiar with then form applications by combining those components
with components written in any .NET language.

CONSTANTS AND VARIABLES
Data in QBasic are stored in Constants and Variables.

Constant is an identifier (named memory location) whose associated value cannot
typically be altered by the program during its execution (though in some cases this

 RULES
1 2 3 4

Income OK? Y Y N N
Any Debt? N Y - -

Any Guearantor? - - Y N
Accept Application
Reject Application

Investigate Further

X

X

X

can be circumvented, e.g. using self-modifying code). Many programming languages
make an explicit syntactic distinction between constant and variable symbols

Constants in QBASIC is divided into two types:

1. Numeric Constants: there are 3 types of numeric constants:

§ Real: the numbers used may be written in decimal form such as (6.9, -52.76,
0.095, -3269.0)

§ Integer: Whole numbers may be written without the decimal point such as
(89, -132, 7698)

§ Exponential Form: this form requires a number fallowed by the letter E,
such as (2.8E05, 0.57E-03, 0.07E-9 and 29.8E7).

2. String Constant: a string consists of a sequence of characters enclosed in
double quote marks. strings usually consist of names or address or cities such
as "Computer", "Baghdad".

BASIC is not a strongly typed language so constants and variables can be declared
dynamically i.e. they don’t have to be described with data types before use.
The example below describes a typical constant declaration statement in BASIC.

Pie = 3.14

Variable is an identifier (named memory location) whose associated value can be
altered by the program during its execution. E.g. if you wanted to count the number
of times a certain function was called you would use a variable, because it may be
called a different number of times each time you run the program. You may not
always run that function twice or three times, you may run it as many times as
needed. Therefore, you would need to store the value in a variable.

QBASIC keeps track of variables by their names referred to as identifier. If you
have a variable representing number of times a crtain function was called, and you
called it 'count', QBASIC would not recognize it if you wanted to print the value of
it and you referred to it as 'counts'.

Variables Naming Convention

§ Variable names cannot begin with a number ('1num' is not a valid variable
name while 'num1' is).

§ Variable names can only include letters and periods (special characters used
in identifying the TYPE of the variable are allowed, but only at the end of
the name).

§ Variable names CANNOT include spaces.
§ Variable names CANNOT be the name of a QBasic command such as PRINT, CLS,

END, etc.

SOME DEFINITION

Statement/Command: An instruction passed to the computer to perform a task
usually represented in a line of code. These words can be used interchangeably
most of the time;

Keyword: A word that is part of the QBasic language. When you type a keyword,
QBasic will automatically capitalize it for you. Keywords are used to identify
commands and parts of commands. Note that you cannot make a named constant or
variable with the same name as a QBasic keyword.

Operator: They are built-in to perform maths operations. They range from

§ arithmetic operators (+, -, etc.),
§ relational operators (=, >, etc.), and
§ Boolean/binary operators (AND, OR).

Block: Generic term for a group of lines inside a structure.
Loop: Generic term for a group of lines executed a series of times.

Our First Program

10 CLS
20 ' Hello World program
30 PRINT "Hello, world!"
40 END

EXPLAINING THE FIRST PROGRAM
Line 10: CLS – Clear Screen.

CLS Command
Syntax: CLS
The simple CLS command clears everything off of the screen and puts the cursor at
the top left corner of the screen.
Line 20: is a comment. All comments in QBasic begin with an ' (apostrophe) or the
keyword REM followed by a space.

Comment
Syntax: {REM | '} comment
The REM command lets you add a comment to your code. As the syntax definition
shows, you can use an apostrophe (') in place of the word REM. It is good
programming convention to add comment while programming
Example:

' My first QBASIC program
REM My first QBASIC program

Line 30: PRINT "Hello, world!"
PRINT displays text on the screen at the current cursor position. Following the
PRINT keyword is a literal constant, the text to display. You can PRINT just about
anything.

PRINT Command
Syntax: PRINT [expression {; | ,} expression {; | ,} ...] [{; | ,}]
The PRINT command is used to put text on the screen at the current cursor
position. The syntax
will take some explaining. expressioncan be any string or number expression.
Examples: PRINT
PRINT " Name", "SSN" PRINT "My name is. . . . "; myname$;

Line 40: END
END Command
Syntax: END
The END command quits the program and returns to the QBasic editor. Example: END

Variable Data Types
Every variable used in the program has data type. A variable is created the first
time it is referenced in the program.
There are five types of variables.
Each one has its own associated suffix to identify its type.
Data type Suffix Description
String $ String variables are the only variables that hold text
Integer % Integer variables are 2 bytes long and hold integers

(numbers with no
fractional part).

Long
Integer

& Long Integer variables are 4 bytes long and also hold
integers.

Single ! Single-Precision variables are 2 bytes long (usually called
Single) can
handle numbers with a decimal point.

Double # Double-Precision variables are 4 bytes long (usually
called Double) can

also handle numbers with a decimal point.

LIBRARY FUNCTIONS
QBasic caters for computational processes that require multiple steps to obtain
their desired result and are to be used again and again in the course of the
program or by different programmers e.g. computing the square root of a given
number, determining the absolute value of an expression, finding the largest value
from a set of numbers etc. QBASIC provides a number of built-in functions to cater
for such. These built-in functions are called intrinsic functions. Below are some
library functions in QBASIC:

Functi
on

Description Syntax Examples

ABS Returns the absolute value of
a number.

ABS (numeric
expression)

PRINT ABS(45.5–100.0)
'Output is: 54.5

CINT

Rounds a numeric expression
to an integer

CINT (numeric-
expression)

PRINT CINT(12.49),
CINT(12.51)
'Output is: 12 13

CLNG Rounds a numeric expression
to a long (4byte) integer

CLNG(numeric-
expression)

PRINT CLNG(338457.8)
'Output is: 338458

CSNG converts a numeric expression
to a single-precision value

CSNG(numeric-
expression)

CSNG(975.3421515)
'Output is: 975.3422

CDBL converts a numeric expression
to a double-precision value

CDBL(numeric-
expression)

CDBL(1 / 3)
'Output
is: .3333333333333333

FIX truncates a floating-point
expression to its integer
portion

FIX(numeric-
expression)

PRINT FIX(12.49),
FIX(12.54)
'Output is: 12 12

INT returns the largest integer
less than or equal to a
numeric expression

INT(numeric-
expression)

PRINT INT(12.54), INT(-
99.4) 'Output is: 12 -100

ATN returns the arctangent of a
specified numeric expression

ATN(numeric-
expression)

CONST PI=3.141592654
PRINT ATN(TAN(PI/4.0)),
PI/4.0
'Output
is: .7853981635 .7853981
635

SIN return the sine of a specified
angle in radian

SIN(angle)

COS return the cosine of a
specified angle in radian

COS(angle)

TAN return the tangent of a
specified angle in radian

TAN(angle)

EXP returns e raised to a specified
power, where e is the base of
natural

EXP(numeric-
expression)
N.B. For EXP, the
numeric expression is
a number less than or
equal to 88.02969.

PRINT EXP(0), EXP(1)
'Output is: 1 2.718282

LOG returns the natural
logarithm of a numeric
expression

LOG(numeric-
expression)
N.B. For LOG, any
positive numeric
expression.

PRINT LOG(1),
LOG(EXP(1)) 'Output is: 0
1

MOD Divides one number by another
and returns the remainder.
numeric-expression1

MOD numeric-
expression2
numeric-expression1,
numeric-expression2 –
Any numeric
expressions. Real
numbers are
rounded to integers.

PRINT 19 MOD 6.7
'QBasic rounds 6.7 to 7,
then divides.
'Output is: 5

SQR Returns the square root of a
numeric expression.

SQR(numeric-
expression)
numeric-expression –
A value greater than

PRINT SQR(25), SQR(2)
'Output is: 5 1.414214

or equal to zero.
STRING PROCESSING

INSTR Returns the position of the
first occurrence of a string
in another string

INSTR([start%,]string
expression1$,
stringexpression2$)
N.B.
start% – Sets the
character position
where the search
begins. If start% is
omitted, INSTR starts
at position 1.
stringexpression1$ –
The string to search
stringexpression2$ –
The string to look
for.

a$ = “Microsoft QBasic”
PRINT INSTR(1, a$,
"QBasic")
‘Output is 11

LEFT$
RIGHT$

Return a specified number of
leftmost or rightmost
characters in a string.

LEFT$(stringexpressio
n$,n%)
RIGHT$(stringexpressi
on$,n%)
N.B.
stringexpression$ –
Any string expression.
n% – The number of
characters to return,
beginning with the
leftmost or rightmost
string character.

a$ = "Microsoft QBasic"
PRINT LEFT$(a$, 5)
'Output is: Micro

PRINT RIGHT$(a$, 5)
'Output is: Basic

MID$ The MID$ function returns
part of a string (a substring).
The MID$ statement replaces
part of a string variable with
another string

MID$ (stringexpressio
n$, start%
[,length%])

MID$ (stringvariable$
, start%
[,length%])=stringex
pression$

N.B.
stringexpression$ –
The string from which
the MID$ function
returns substring, or
the replacement
string used by the
MID$ statement. It can
be any string
expression.
start% – The position
of the first character
in the substring being
returned or replaced.
length% – The number
of characters in the
substring. If the
length is omitted,
MID$ returns or
replaces all
characters to the
right of the start
position.
stringvariable$ – The
string variable being
modified by the
MID$ statement.

a$ = "Where is Paris?"
PRINT MID$(a$, 10, 5)
'Output is: Paris

Text$ = "Paris, France"
PRINT Text$
'Output is: Paris, France

MID$(Text$, 8) = "Texas "
PRINT Text$
'Output is: Paris, Texas

LEN Returns the number of
characters in a string or the
number of bytes

LEN(stringexpression
$)
LEN(variable)

a$ = "Microsoft QBasic"
PRINT LEN(a$)
‘Ouput is 16

required to store a variable.
N.B.
stringexpression$ –
Any string expression.
Variable – Any
nonstring variable.

ASSIGNMENT STATEMENT
Variables should be assigned a value, to use it in the program. There are two ways
to do this.

LET Command
The LET command assigns a variable a value.

Syntax: [LET]	variable	=	expression	

E.g. mystring$	=	"This	is	a	test."	

LET	result%	=	var1%	+	var2%	

INPUT Command
INPUT lets the user input the value of a variable or variables.

Syntax: INPUT	[;]	[literalstring$	{;	|	,}]	var[,	var,	...]	

E.g. INPUT	"What's	your	name:",	n$	

INPUT	"Enter	your	phone	number:",	p$	
PRINT	 n$;	 ",	 your	 number	 ";	 p$;	 "	 has	 been	 nominated	 for	 the	 monthly	 draw,	
congratulation!"	
END	

	
INPUT;	var1!	

CONTROL STRUCTURE
Control structure is a block of code that dictates the flow of control in a
programming language i.e. it chooses a direction in which to go based on given
parameters. The term flow control details the direction the program takes.

The three basic control structure are:

§ Sequence
§ Condition testing/Selection
§ Iteration/repetition

Control structure

Condition Testing/Selection
The core to any conditional/selection statement is a Boolean, or true/false, value.
If the value is true, it does one thing, if the value is False, it does another thing.
We can get T/F values by using the other two kinds of operators: relational and
logical (Boolean)/binary. Relational operators are tests between two number
values. Basically, you can find how two numbers relate to each other.

NAME SYMBOL(S) DESCRIPTION
Equal to = Returns true if the two values are equal, and false

if not.
Not Equal to <>, >< Returns true if the two values are not equal, and

false if they are.
Greater than > Returns true if the first number is greater than

the second, and false if not.
Less than < Returns true if the first number is less than the

second, and false
if not.

Greater than
orEqual to

>=, => Returns true if the first number is greater than or
equal to the
second, and false if not.

Less than or
Equal to

<=, =< Returns true if the first number is less than or
equal to the second, and false if not.

There are two main commands you can use with conditionals:

§ IF - THEN – ELSE statement and
§ SELECT CASE.

Both are similar, but are better suited to some things over others. IF can be used
wherever SELECT CASE can, but not the other way.

IF Command (if-then-else --single-line form)

Syntax:
IF	condition	THEN		

statement		
[ELSE	...	

…	statement]	
	 END	IF	

The IF command in this form lets you execute a line depending on a condition.
Condition is a True/False value. If condition is True (not 0), then the statement
following THEN is executed. If condition is False (0) and an ELSE clause is
included, the statement following ELSE is executed; or else, flow continues to the
next line. This command is small and good if you only need to do one thing based on
a condition.

Example:

INPUT	"Enter	a	number	between	1	and	10:",	guess	
IF	guess	>	10	THEN		

PRINT	"error"		
ELSE		

PRINT	"okay"	
END	IF	
END	

IF Command (If-Elseif-else -- block form)

Syntax:

IF	condition	THEN	
<statements>	

[ELSEIF	condition	THEN	
<statements>	

]	...	
[ELSE	

<statements>	

]	
END	IF	

This form of ‘IF’ statement is designed for both complex situations and large
chunks of code. First, the top condition is tested. If true, the code between it and
the next ELSEIF, ELSE, or END IF is run. If it's false, the next ELSEIF clause is
tested, and so on. If none of the clauses are true, the ELSE's code is run. After
going through any chunk of code, flow returns to after the END IF line. The ELSE
clause is optional, and you can have as many ELSEIF clauses as you wish.

Note: In large programs we might have a number of blocks inside each other. It's
easy to forget the closing statements, and QBasic gives cryptic, confusing errors
when you leave a block or loop open. For example, you might get a "Block IF with no
END IF" error when in fact you forgot to close one of your loops. Even QBasic
admits it.

LABELS AND THE GOTO AND GOSUB COMMANDS

The GOTO and GOSUB commands enable you to jump to certain positions in your
program. Labels are used to specify what point in the program to continue
execution.

The GOTO syntax is as below

GOTO	<label>	

e.g.:

PRINT	"1"	
GOTO	TheLabel	
PRINT	"2"	
TheLabel:	
PRINT	"3"	

Output (notice how PRINT "2" is skipped):

1
3

N.B: ‘TheLabel’ can be placed on the same line as PRINT “3”
 TheLabel: PRINT “3”

GOSUB
The GOSUB command is the same as GOTO, except when it encounters a RETURN
statement, the program "returns" back to the GOSUB command i.e. RETURN
continues program execution immediately after the previous GOSUB statement.

PRINT	"1"	
GOSUB	TheLabel	
PRINT	"2"	
END	

	
TheLabel:	PRINT	"3"	
RETURN	

(Note: The END command exits the program.)

Output:

1
3
2

Line numbers: Line numbers can also be used as labels.

PRINT	"1"	
GOTO	10	
PRINT	"2"	
10	PRINT	"3"	(Notice	the	line	number)	

You can also write the program like this:

10	PRINT	"1"	
20	GOTO	40	
30	PRINT	"2"	
40	PRINT	"3"	

10	PRINT	"1"	
20	GOSUB	40	
30	PRINT	"2"	
END	
40	PRINT	"3"	
RETURN	

The line numbers don't even have to be in sequence.

17	PRINT	"1"	
2	GOTO	160	
701	PRINT	"2"	
160	PRINT	"3"	

Each of these programs output:

1
3

SELECT CASE command.

This is preferred when we are only examining the value of one variable throughout
the tests.

Syntax:

SELECT	CASE	expression	
CASE	 {expression1	 [,	expression2,	 ...]	|	 IS	 relational_operator	expression	|	Expression1	TO	
expression2}	
<statements>	

[
CASE	(see	choices	above)	
<statements>	

]	...	
[

CASE	ELSE	
statements	

]	
END	SELECT	

This block statement looks at the value of the beginning expression. It checks the
first CASE. The expression1 [, expression2, ...] form checks to see if the value
equals a certain value. The IS relational_operator expression form checks to see
how it relates to another value. The expression1 TO expression2 checks to see if it
is between (inclusively) two other values. If it is found to be True, the following
block of code is run. If none are found True, the CASE ELSE block (if it exists) is
run. After a block is run, the program continues after the END SELECT keyword.

SELECT CASE is recommended when checking the value of one number, and IF when
using multiple variables in your tests. It's all personal preference, though. The
next program show how SELECT CASE can be used.
Example:

'SELECT	CASE	demonstration	
INPUT	"Please	enter	your	marks:	",	marks	
SELECT	CASE	marks	

				 CASE	IS	>	100	
	 	 PRINT	“Score	is	invalid”	
	 CASE	70	TO	100	
									 	 PRINT	"You	have	an	A-	grade."	
					 CASE	60	TO	69	
									 	 PRINT	"You	have	a	B-	grade"	
					 CASE	50	TO	59	
									 	 PRINT	"You	got	a	C	-	grade."	
					 CASE	45	TO	49	
									 	 PRINT	"You	got	a	D	-	grade"	
					 CASE	ELSE	
									 	 PRINT	"You	failed."	

END	SELECT	
END	

Iteration -- Loops
Loops are used when you want your program to do something repeatedly. All of the
loop constructs in QBasic execute a block of commands repeatedly 0 or more times.

FOR/NEXT Loop

Syntax:

FOR	counter	=	start	TO	end	[STEP	increment]	
NEXT	[counter]	

Example:

FOR	I	=	1	TO	10	STEP	2	
'Write	my	name	5	times	
PRINT	“Kuldeep”;	

NEXT	I	
	

CLS	
PRINT	"PROGRAM:	12	X	Tables	Square"	
PRINT	
FOR	TIME	=	1	TO	12	
FOR	TABLE	=	1	TO	12	

PRINT	TIME	*	TABLE;	"	";	
NEXT	
PRINT	
NEXT	
END	

Write a program which uses a FOR/NEXT loop to count from 100 to 20 in steps of -2
and print the number out on each loop.

DO/LOOP
Syntax:

DO	{WHILE|UNTIL}	condition	
LOOP	

or

DO	
LOOP	{WHILE|UNTIL}	condition	

Note the two different ways of using it. If you put the condition at the beginning, it
is evaluated before each loop execution. If you put it with LOOP at the end,
however, it evaluates it after each execution! This guarantees that, no matter what,
the code inside runs at least once. If you use the WHILE keyword before the
condition, the loop runs as long as condition is true. If you use UNTIL, the loop
runs as long as condition is false!

Example:

DO	
INPUT	"Enter	the	first	number:	",	A	
INPUT	"Enter	the	second	number:	",	B	
PRINT	"The	answer	is:	";	A	*	B	
INPUT	"Would	you	like	to	do	it	again	(y/n)?	",	Answer$	

LOOP	WHILE	Answer$="y"	
	

'This	example	shows	one	of	its	best	uses:	verifying	input!	
	
DO	'run	the	code	at	least	once	

INPUT	"Enter	a	number	between	1	and	10.	",num	
LOOP	UNTIL	num>	0	AND	num<	11	'wait	until	it's	valid	

WHILE … WEND command
Syntax:

WHILE	(condition)	
	 Statement	
	 Statement	2	
	 .	
	 .	
	 .	
	 Statement	n	
WEND	

Program to calculate factorial for a given number n is as follow:
	
LET	nfac	=	1	
INPUT	"Enter	number",	n	
IF	n	=	0	THEN	
				nfac	=	1	
END	IF	
WHILE	n	>	0	
				nfac	=	nfac	*	n	
				n	=	n	-	1	
WEND	
PRINT	nfac	

EXIT Command

Syntax:

EXIT	{FOR	|	DO}	

The EXIT command lets you break out of a FOR/NEXT or DO/LOOP construct in the
middle of
the code. This would be used when you must stop the loop prematurely. For
example, if you
have a FOR/NEXT going from 1 to 10 and you need to end it early because another
condition is
true, you can use EXIT FOR to stop the loop.

Example:

DO	
INPUT	"Please	enter	a	number	between	1	and	10.	",num	
IF	num>	0	AND	num<	11	THEN	EXIT	DO	
PRINT	"Hey!	Can't	you	read?"	

LOOP		
	
'note	that	the	DO/LOOP	can	be	used	without	a	condition	at	all,'resulting	in	an	infinite	loop.		
EXIT	is	the	only	way	to	break	such	a	loop.	

Other examples

Divide two integers A and B by method of successive subtraction

INPUT	"Value	of	dividend:	",	A	
INPUT	"enter	value	of	divisor:	",	B	
PRINT	A,	"divided	by",	B,	"is:";	
WHILE	A	>=	B	
				A	=	A	-	B	
				Division	=	Division	+	1	
WEND	
IF	A	>	0	THEN	
				fraction	=	A	/	B	
				Answer	=	Division	+	fraction	
				PRINT	Answer	
ELSE	
				PRINT	Division	
END	IF		

Program to calculate the average of a list of n numbers

INPUT	"How	many	numbers	are	in	the	List:	",	n	
CLS	
FOR	j	=	1	TO	n	
				INPUT	"Enter	the	Number:	",	x	
				CLS	
				sum	=	sum	+	x	
NEXT	j	
average	=	sum	/	n	
PRINT	"The	average	of	the",	n,	"numbers	is:",	average	
END	

Design an algorithm that will receive a positive integer as input and find the
sum of the digit that make up the integer e.g. if the integer is 324, then sum =
3+2+4 = 9

INPUT	"number;",	n	

sum	=	0	
WHILE	n	>	0	
				c	=	n	MOD	10	
				PRINT	c	
				sum	=	sum	+	c	
				n	=	FIX(n	/	10)	
WEND	
PRINT	sum	
END	

Qbasic program to scan a string, check if it is a palindrome and print appropriate
message

DIM	Wrd	AS	STRING	
DIM	RevWrd	AS	STRING	
DIM	x	AS	INTEGER	
	
CLS	
	
INPUT	"Enter	Word:	",	Wrd	
	
FOR	x	=	LEN(Wrd)	TO	1	STEP	-1	
				RevWrd	=	RevWrd	+	MID$(Wrd,	x,	1)	
NEXT	x	
	
PRINT	
PRINT	"Original	Word:	";	LCASE$(Wrd)	
PRINT	"Reverse	Word:	";	LCASE$(RevWrd)	
	
IF	LCASE$(Wrd)	=	LCASE$(RevWrd)	THEN	
				PRINT	"The	Word	Is	A	Palindrome"	
ELSE	
				PRINT	"The	Word	Is	Not	A	Palindrome"	
END	IF	

Arrays
Arrays hold lists of variables of the same data type and reference them as
subscripted variables. When there are large lists of variables and data, it is easier
to contain the data in an array than have large amounts of separate variables to
hold the data.

In QBASIC, an array should be declared before use. An array may either be
declared implicitly or explicitly.

The syntax for array declaration is:

DIM	array_name(number_of_items)	[AS	datatype]	

Examples

Program to scan a linear array of 100 elements for negative number, print the
number of all such elements found and compute the product of all such number,
print it if positive, or print an appropriate message if negative

DIM	A(10)	
LET	i	=	1	
p	=	1	
c	=	0	
WHILE	i	<=	10	
				INPUT	"enter	the	values:	",	A(i)	
				IF	A(i)	<	0	THEN	
								p	=	p	*	A(i)	
								c	=	c	+	1	
				END	IF	
				i	=	i	+	1	
WEND	
IF	p	>	0	THEN	
				PRINT	"The	product	of	the	negative	numbers	is:	",	p	
				PRINT	"The	total	number	of	negative	numbers	entered	is	",	c	
ELSE	
				PRINT	"The	product	of	the	negative	numbers	is:	",	p	
				PRINT	"The	total	number	of	negative	numbers	entered	is	",	c	
				PRINT	"the	value	is	negative"	
END	IF	
END		

Program to determine the smallest number in a list of n numbers

INPUT	"How	many	numbers	are	in	the	list:	",	n	
FOR	j	=	1	TO	n	
				INPUT	"Enter	Number:	",	Numbers(j)	
NEXT	j	
largest	=	Numbers(1)	
Smallest	=	Numbers(1)	
FOR	j	=	2	TO	n	
				IF	Numbers(j)	>	largest	THEN	
								largest	=	Numbers(j)	
				ELSEIF	Numbers(j)	<	Smallest	THEN	
								Smallest	=	Numbers(j)	
				END	IF	
NEXT	j	
CLS	
PRINT	"Array	Numbers:"	
FOR	j	=	1	TO	n	
				PRINT	Numbers(j);	"	";	
NEXT	j	
PRINT	"The	Highest	Number:	";	largest	
PRINT	"The	Lowest	Number:	";	Smallest	

The grades obtained by students in eight courses are to be supplied as input to
the computer in addition to the credit unit of the courses. Design an algorithm
to compute the Grade Point Average (GPA) of the student. Assume the following:
A=5points, B=4points, C=3points, D=2points and F=0 point

totalpoint	=	0	totalunit	=	0,	j	=	1	
WHILE	j	<=	5	
				INPUT	"enter	course:	",	course$(j)	
				INPUT	"enter	unit:	",	unit(j)	

				INPUT	"enter	grade	scored:	",	grade$(j)	
				totalunit	=	totalunit	+	unit(j)	
				IF	grade$	=	"A"	THEN	
								totalpoint	=	totalunit	+	5	*	unit(j)	
				ELSEIF	grade$	=	"B"	THEN	
												totalpoint	=	totalunit	+	4	*	unit(j)	
								ELSEIF	grade$	=	"C"	THEN	
																totalpoint	=	totalunit	+	3	*	unit(j)	
												ELSEIF	grade$	=	"D"	THEN	
																				totalpoint	=	totalunit	+	2	*	unit(j)	
																ELSEIF	grade$	=	"F"	THEN	
																								totalpoint	=	totalunit	+	0	*	unit(j)	
								END	IF	
j	=	j	+	1	
WEND	
PRINT	totalunit	
PRINT	totalpoint	
GPA	=	totalpoint	/	totalunit	
PRINT	"GPA	=",	GPA	

Consider a sequence of real numbers 𝑿_𝒊, 𝟏, 𝟐,,…, 𝒎. The mean is defined as
𝑿 ̅=((𝑿𝟏+𝑿𝟐+…+𝑿𝒎))/𝒎
The deviation about the mean is:
 𝒅_𝒊 = (𝑿_𝒊- 𝑿 ̅), 𝒊=𝟏, 𝟐,𝟑,…, 𝒎
And the standard deviation is
𝑺= √(((𝒅_𝟏^𝟐+𝒅_𝟐^𝟐+…+𝒅_𝒎^𝟐))/𝒎)
Write a program to calculate the standard deviation of the numbers

INPUT	"How	many	sequence	real	numbers	are	to	be	considered:	",	m	
FOR	j	=	1	TO	m	
				INPUT	"Enter	the	numbers:	",	X(j)	
				sum	=	sum	+	X(j)	
NEXT	j	
Mean	=	sum	/	m	
CLS	
FOR	j	=	1	TO	m	
				dev(j)	=	X(j)	-	Mean	
				PRINT	"The	deviation	around	the	mean	for",	X(j),	"is",	dev(j)	
				devsum	=	devsum	+	(dev(j)	*	dev(j))	
NEXT	j	
stddev	=	SQR(devsum	/	m)	
PRINT	"The	standard	Deviation	for	the",	m,	"numbers	is:",	stddev	
END	

Functions and Subroutines

A subroutine is a functional unit of code which may be called and implemented
anywhere in an program and takes zero or more values as input, act upon that data
to give output to the calling routine. Invoked with the CALL statement

A function is similar to a subroutine but must return at least one value to the
calling routine. Invoked by placing the function name and its associated argument
in an expression

FOR	x	=	1	TO	3	
				CALL	GetText	

NEXT	x	
	
SUB	GetText	
PRINT	"Enter	some	text:";	
INPUT	text$	
PRINT	"The	text	you	entered	was:	";	text$	
END	SUB	

Functions have to return a value,
In QBASIC, set a variable with the same name as the function.

PRINT	Add(10,	7)		
FUNCTION	Add	(num1,	num2)		
	 Add	=	num1	+	num2		
END	FUNCTION	

PRINT	Add$("Hello",	"World")		
FUNCTION	Add$	(str1$,	str2$)		
	 Add$	=	str1$	+	str2$		
END	FUNCTION	

Implementing factorial using a function
	
FOR	i	=	0	TO	3:	
				INPUT	"Enter	number:	",	num	
				PRINT	num;	"!	=";	nfac(num)	||	PRINT	STR$(num)	+	"!	="	+	STR$(nfac(num))	
NEXT	i	
END	
	
FUNCTION	nfac	(n)	
nfac	=	1	
IF	n	=	0	THEN	
				nfac	=	1	
END	IF	
WHILE	n	>	0	
				nfac	=	nfac	*	n	
				n	=	n	-	1	
WEND	
END	FUNCTION	
	

Implementing factorial using a subroutine

WHILE	i	<=	2	
				INPUT	"Enter	number",	num	
				PRINT	num;	"!	=";	
				CALL	fact(num)	
				i	=	i	+	1	
WEND	
	
SUB	fact	(n)	
nfac	=	1	
IF	n	=	0	THEN	
				nfac	=	1	

END	IF	
WHILE	n	>	0	
				nfac	=	nfac	*	n	
				n	=	n	-	1	
WEND	
PRINT	nfac	
END	SUB	

The fibonacci sequence is a series of numbers in which each number (Fibonacci
number) is the sum of the two preceding numbers. Mathematically, the
sequence 𝒏 of Fibonacci numbers is defined by the recurrence relation
𝑭𝒏=𝑭𝒏−𝟏+𝑭𝒏−𝟐,

a	=	1	
b	=	2	
PRINT	a,	b,	
FOR	i	=	1	TO	8	
				c	=	a	+	b	
				PRINT	c,	
				a	=	b	
				b	=	c	
NEXT	i	
END	

Implementing Fibonacci in a Subroutine
INPUT	"Enter	the	number	of	Sequence:	",	num	
CALL	fibonacci(num)	
	
SUB	fibonacci	(n)	
INPUT	"Enter	the	first	term",	a	
INPUT	"Enter	the	second	term",	b	
PRINT	a;	b;	
IF	n	>	0	THEN	
				FOR	i	=	1	TO	n	
								c	=	a	+	b	
								PRINT	c;	
								a	=	b	
								b	=	c	
				NEXT	i	
END	IF	
END	SUB	
Problem Solving Using Recursion

Recursion is the process of solving a problem by reducing it to small version of
itself. Recursion is a powerful way to solve certain problems for which the
solution would otherwise be very complicated.

Recursive definition

A recursive definition is a definition in which something is defined in terms of a
smaller version of itself. In mathematics for example, the factorial of an integer is
defined as follows:

0! = 1 2.0
n! = n x (n – 1)! If n > 0 2.1

In this definition:
0! is defined to be 1, and if n is an integer greater than 0, first we find (n – 1)! And
then multiply it by n. To find (n – 1)!, we apply the definition again. If (n – 1) > 0,
then we use Equation 2.1., otherwise, we use Equation 2.0. Thus, for an integer n
greater than 0, n! is obtained by first finding (n – 1)! (that is n! is reduced to a
smaller version of itself) and then multiplying (n – 1)! by n.

Note that the solution in Equation 2.0 is direct – that is, the right side of the
equation contains no factorial notation. The solution in Equation 2.1 is given in
terms of a smaller version of itself. The definition of the factorial as given in
Equations 2.0 and 2.1 is called a recursive definition. Equation 2.0. is called the
base case, the case for which the solution is obtained directly. Equation 2.1 is
called the general case or recursive case.

It is clear from this example that:

(i) every recursive definition must have one (or more) base cases
(ii) the general case must eventually be reduced to a base case.
(iii) the base case stops the recursion.

The concept of recursion in computer science works similarly. In computer science,
we talk about recursive algorithm and recursive methods. An algorithm that finds
the solution to a given problem by reducing the problem to smaller versions of
itself is called a recursive algorithm. The recursive algorithm must have one or
more base cases, and the general solution must eventually be reduced to base case.

A method that calls itself is called a recursive method. That is, the body of the
recursive method contains a statement that causes the same method to execute
before completing the current call. Recursive algorithms are implemented using
recursive methods.

In what follows, we write the recursive method that implements the factorial
definition.

FUNCTION	factorial	(n)	
IF	n	=	0	THEN	
				factorial	=	1	
ELSE	
				factorial	=	n	*	factorial(n	-	1)	
END	IF	
END	FUNCTION	

Direct and Indirect Recursion

A method is called directly recursive if it calls itself. A method that calls another
method and eventually results in the original method call is called is called
indirectly recursive. For example, If method A calls method B and method B calls
method A, then method A is indirectly recursive. Indirect recursion could be
several layers deep. For example, If method A calls method B, method B calls
method C, method C calls method D, and method D calls method A, then method A is
indirectly recursive.

Indirect recursion requires the same careful analysis as direct recursion. The base
case must be identified and appropriate solutions must be provided to them.
However, tracing through indirect recursion can be a tedious process. Therefore,
extra care must be exercise when designing indirect recursion methods.

A recursive method in which the last statement executed is the recursive call is
called a tail recursive method. The method factorial is an example of a tail
recursive method.

Infinite Recursion

A finite recursion occurs when recursive call reaches a call that make no further
recursive calls, that is the sequence of recursive calls eventually reach a base
case. However, if every recursive call results in another recursive call, then the
recursive method (algorithm) is said to have infinite recursion. In theory, infinite
recursion executes forever. Every call to a recursive method requires the system
to allocate memory for the local variables and formal parameters. In addition, the
system also saves the information so that after completing a call, control can be
transferred back to the right caller. Therefore, because computer memory is
finite, if you execute an infinite recursive method on a computer, the method will
execute until the system runs out of memory, which results in an abnormal
termination of the program.

Recursive methods (algorithms) must be carefully designed and analyzed. You must
make sure that every recursive call eventually reduces to a base case. The
following sections give various examples illustrating how to design and implement
recursive algorithms.

To design a recursive method, you must:

 1. Understand the problem requirements.
 2. Determine the limiting conditions. For example, for a list, the limiting

 condition is determined by the number of elements in the list.
 3. Identify the base cases and provide a direct solution to each base case.
 4. Identify the general cases and provide a solution to each general case

 in terms of a smaller version of itself.

Recursion: some examples

This section presents examples on how recursive algorithms are developed and
implemented in qbasic using recursive methods.

Fibonacci Number

In this example, we write a recursive method, rFibNum to determine the desired
Fibonacci number. The method rFibNum takes as parameters three numbers
representing the first two numbers of the Fibonacci sequence and a number n, the
desire nth Fibonacci number. The method rFibNum returns the nth Fibonacci number
in the sequence.
Recall that the third Fibonacci number is the sum of the of the first two Fibonacci
numbers. The fourth Fibonacci number in a sequence is the sum of the second and
third Fibonacci numbers. Therefore, to calculate the fourth Fibonacci number, we
add the second Fibonacci number and the third Fibonacci number (which itself is
the sum of the first two Fibonacci numbers). The following recursive algorithm
calculates the nth Fibonacci number, where a denotes the first Fibonacci number, b
the second Fibonacci number, and n the nth

 Fibonacci number:

 2 nif2)-nb,rFibNum(a,1) -n b,rFibNum(a,
2n) b, rFibNum(a,

1

>+
==
=
nIfb
nIfa

The following recursive method implements the Fibonacci algorithm:

REM Nth term = (N-1)th term + (N-2)th term;
INPUT "How many terms do you want to calculate: ", n
DECLARE FUNCTION Fibonacci (n)
FOR counter = 1 TO n

 PRINT fibonacci(counter);
NEXT counter

REM Function to calculate Nth Fibonacci number
REM Fibonacci(N) = fibonacci(N - 1) + fibonacci(N - 2);

FUNCTION fibonacci (n)
IF (n = 0 OR n = 1) THEN
 fibonacci = 1
ELSE
 fibonacci = (fibonacci(n - 1) + fibonacci(n - 2))
END IF
END FUNCTION

Review Exercise

1. Mark the following statements as true or false.
a. Every recursive definition must have one or more base cases.
b. Every recursive method must have one or more base cases.
c. The general case stops the recursion.
d. In the general case, the solutions to the problem is obtained directly.
e. A recursive method always returns a value.

2. What is a base case?
3. What is a recursive case/
4. What is direct recursion?
5. What is indirect recursion?
6. What is tail recursion?
7. Consider the following recursive method:

FUNCTION myMethod(number)
If (number = 0)
 myMethod = number;
else
 myMethod = number + myMethod(number - 1));

a. Identify the base case.
b. Identify the general case.
c. What valid values can be passed as parameters to the method myMethod?
d. If myMethod(0) is a valid call, what is its value? If not, explain why?
e. If myMethod(5) is a valid call, what is its value? If not, explain why?
f. If myMethod(-3) is a valid call, what is its value? If not, explain why?

8. What is problem solving?
9. List and discuss six(6) steps you should follow in order to solve a problem
10. What is an algorithm?
11. State the properties of an algorithm.
12. Comment on each of the following:

 (a) Problem solving called recursion.
 (b) Direct and Indirect Recursion.
 (c) Infinite Recursion.

Laboratory Problems

A Program to print HELLO at the Beginning of a Line
Source Code
Private Sub form_Activate()
'A Program to print Hello at the Beginning of a Line
Print "HELLO"
End Sub
Object Screen

A Program to accept the name of the User and print Welcome (name) LET’S BE FRIENDS
Source Code
Private Sub Form_Activate()
' A program to print the name of the User
 Dim Name As String
 Name = InputBox("Hi, What is your Name? ", "Practical Work")

 Print vbNewLine
 Print "WELCOME ", Name
 Print
 Print "LET'S BE FRIENDS"
End Sub

Object Screen

A program to

Convert

Temperature reading in Fahrenheit
Source Code
Private Sub Form_Activate()
' A Program to Convert Fahrenheit to Celsius
Dim Celsius, Fehre As Single
 Fahre = InputBox("Supply Value of Fahrenheit in Temperature", "Conversion")
 Celsius = 0.05556 * (Fahre - 32)
 Print Fahre & " Fahrenheit in Temperature is " & Celsius & " degress Celsius"
 End Sub

Object Screen

A Program to Compute Volume and Area of a
Sphere
Source Code
Private Sub Form_Activate()
' Program to calculate the volume and area of a sphere using the formular V=(4*pie*r^3)/3
 Dim Pie, Volume, Area, Radius As Single
 ' Assign Value to Pie
 Let Pie = 3.142
 ' Accept Value for Radius
 Radius = InputBox("Supply the Radius of the Sphere: ", "Sphere")
 ' Compute Volume and Area
 Volume = (4 * Pie * Radius ^ 3) / 3
 Area = 4 * Pie * Radius ^ 2
 'Output computed Values
 Print "The Radius of a Sphere is " & Radius & vbNewLine
 Print "The Volume of a Sphere is " & Volume & vbNewLine
 Print "The Area of a Sphere is " & Area

End Sub
Object Screen

A program to calculate the Mass of Air in an automobile tire
Source Code
Private Sub Form_Activate()
' A Program to find the Mass of Air in Tire

Dim Temperature, Pressure, Volume, Mass As Single
 ' Accept value for Pressure
 Pressure = InputBox("Supply Value for Pressure", "Pressure")
 'Accept value for Volume
 Volume = InputBox("Supply value for Volume", "Volume")
 'Accept Value for Temperature
 Temperature = InputBox("Supply Value for Temperature", "Temperate")
 'Compute Mass of Air in Tire
 Mass = (Pressure * Volume) / (0.37 * (Temperature + 460))
' Output the mass in pounds
Print "The Mass of Air in Tire is " & Mass & " Pounds"
End Sub
Object Screen

A program to Calculate 𝒏!

𝒏,𝒓 !𝒓!
 where n and r are positive integers such that n >= r

Source Code
Private Sub Form_Activate()
' A program to calculate N factorial
Dim Num, R, Kounter, Factorial As Integer
Dim I, J, Comb, Nfact, Pfact As Integer
 Let Factorial = 1
 Let Nfact = 1
 Let Pfact = 1
 Num = InputBox("Supply Value for Num", "Factorail")
 R = InputBox("Supply Value for R ", "R")
 ' Test the value supply for Num and R
 If Num < R Then
 Print "Invalid Number Supply"
 Exit Sub

 End If
 ' Substract R from Num
 Temp = Num - R
 ' Calculate Num Factorial
 For Kounter = 1 To Num
 Factorial = Factorial * Kounter
 Next
 'Print Num & "! = " & Factorial
 ' Calculate Temp factorial
 For I = 1 To Temp
 Nfact = Nfact * I
 Next
 'Calculate R Factorial
 For J = 1 To R
 Pfact = Pfact * J
 Next
 'Compute the Combination
 Comb = Factorial / (Nfact * Pfact)
 'Output the Answer
 Print "The value of Num Supplied is " & Num & vbCrLf
 Print "The value of R Supplied is " & R & vbCrLf
 Print Num & " Combination " & R & " = " & Comb
End Sub

Object Screen

A program to expand binomial expression with the assumed p=0.3333, q=0.6667 and n=7.
Source Code

A program to Store Array K, store array L in locations occupied by the k elements 30, 40, 50 and write out
the last four elements of k as a one-dimension array M
Source Code
Private Sub Form_Activate()
'Array Declaration
Dim K(7) As Integer
Dim L(3) As Integer
Dim M(4) As Integer

 For I = 1 To 7
 K(I) = InputBox("Supply Value of Array K " & I, "Array Input")
 Next
 'Display Headling
 Print "The Value of Array K Elements Entered are: "
 For J = 1 To 7

 Print K(J)
 Next
 'Print vbCrLf
 For I = 1 To 3
 L(I) = InputBox("Supply Value of Array L " & I, "Array Input")
 Next

 'Display Headling
 Print "The Value of Array L Elements Entered are: "
 For J = 1 To 3
 Print L(J)
 Next
 K(3) = 21
 K(4) = 22
 K(5) = 23
 J = 1
 Print "The New Element of Array M are "
 For F = 4 To 7
 M(J) = K(F)
 Print M(J)
 J = J + 1
 Next
 End Sub

Object Screen

A Program to Store different sets of array a and b respectively.
Source Code
Private Sub Form_Activate()
'Array Declaration
Dim A(23, 23) As Integer
Dim B(23, 23) As Integer
Dim C(23, 23) As Single

 Dim Row, Col As Integer

 'Enter Value of Row and Columns

 Row = Val(InputBox("Enter Number of Row ", "Row"))
 Col = Val(InputBox("Enter Number of Columns ", "Columns"))

 'Supply Values into Elements of Array Row and Columns
 For I = 1 To Row
 For K = 1 To Col
 A(I, K) = Val(InputBox("Supply Values in Array A " & K, "Array Input"))
 Next K
 Next I

 For I = 1 To Row
 For K = 1 To Col
 B(I, K) = Val(InputBox("Supply Values in Array B " & K, "Array Input"))
 Next K
 Next I

 'Display Array A
 txtA.Text = "The Value in Array A : " & vbCrLf
 For M = 1 To Row
 For N = 1 To Col
 txtA.Text = txtA.Text & A(M, N) & Space(2)
 Next N
 txtA.Text = txtA.Text & vbCrLf
 Next M
 'Display Array B
 txtDisplay.Text = "The Value in Array B : " & vbCrLf
 For M = 1 To Row
 For N = 1 To Col
 txtDisplay.Text = txtDisplay.Text & B(M, N) & Space(2)
 Next N
 txtDisplay.Text = txtDisplay.Text & vbCrLf
 Next M
 'Compute and Output Result of Elements C
 For M = 1 To Row
 For N = 1 To Col
 C(M, N) = A(M, N) / B(M, N)
 txtC.Text = txtC.Text & C(M, N) & Space(5)
 Next N
 txtC.Text = txtC.Text & vbCrLf
 Next M
End Sub
Object Screen

A Program to calculate deviation about the mean.
Source Code
Private Sub Form_Activate()
'Calculate the Standard Deviation and Mean Deviation

Dim Mean, SD, Sum, DevSum, Dev As Single
Dim X(100) As Single
Dim M As Integer
 Sum = 0
 DevSum = 0
 M = InputBox("Enter the Maximum Number of Elements of Array : ", "Standard Deviation")
 For I = 1 To M
 X(I) = InputBox("Values of Linear Array : ", "Element of Array")
 Sum = Sum + X(I)
 Next I
 'Compute the Mean
 Mean = Sum / M
 'Compute the Deviation
 For I = 1 To M
 Dev = X(I) - Mean
 DevSum = DevSum + (Dev * Dev)
 Next
 'Compute Standard Deviation
 SD = Sqr(DevSum / M)
 'Display the Computed Results
 Pic.Print "The Maximum Number of Array Supplied is : " & M & vbNewLine
 For I = 1 To M
 Pic.Print "Array Element of X[" & I & "]=" & X(I)
 Next
 Pic.Print
 Pic.Print "Mean of " & M & " Array Elements is " & Mean
 Pic.Print "The Standard Deviation is " & SD

End Sub
Screen Product

A program to compute Sine of x by summing the first n term of the infinite series sin(x) = x-
x3/3!+x5/5!-x7/7!+….
Source Code
Private Sub Form_Activate()
' A Program to Calculate the Sine of X

 Let Pie = 3.142
 Let ErrorLimit = 0.00001
 Dim Term, Sum, X, Angle As Single
 Dim Denum As Integer
 Angle = Val(InputBox("Supply Angle in Degree ", "Sine of an Angle"))
 X = (Angle * Pie) / 180
 Term = X
 Denum = 1
 Sum = Term
 'For I = 1 To 499
 'If I < 499 Then
 Do While (Term >= ErroLimit)
 Denum = Denum + 2
 Term = Term * (-(X * X)) / (Denum * (Denum - 1))
 Sum = Sum + Term
 Loop
 'End If
 'Next
 Print "The Sine of angle of " & Angle & " is " & Sum
End Sub

Screen Result

A program which print the total marks obtained by each candidate over 2 exams paper. The program
should also print the overall average mark for paper1, paper2 and overall total average mark.
Source Code
Private Sub Form_Activate()
'A Program to Store Records of 20 Candidate

 Dim Candidate(20), Paper1(20), Paper2(20) As Integer
 Dim Paper1_Avg, Paper2_Avg, Overall_Avg As Integer
 Dim TotalMark_Paper1, TotalMark_Paper2, Kounter, Total(20), Overall_Total, MatricNo(20) As Integer
 TotalMark_Paper1 = 0
 TotalMark_Paper2 = 0
 Overall_Total = 0
 'Start the Computation

 For Kounter = 1 To 20
 MatricNo(Kounter) = (InputBox("Supply Student Matric Number for Candidate " & Kounter,
"Candidate Record"))
 Paper1(Kounter) = (InputBox("Enter Mark Obtained in Paper One", "Paper One"))
 Paper2(Kounter) = (InputBox("Enter Mark Obtained in Paper Two", "Paper Two"))
 Total(Kounter) = Paper1(Kounter) + Paper2(Kounter)
 Overall_Total = Overall_Total + Total(Kounter)
 TotalMark_Paper1 = TotalMark_Paper1 + Paper1(Kounter)
 TotalMark_Paper2 = TotalMark_Paper2 + Paper2(Kounter)

 Next

 'Display the Output

 Print Tab(20); "CANDIDATES EXAMINATION RECORD STORED TO OBTAIN TOTAL
AVERAGE SCORE"
 Print Tab(20); "**"
 Print
 Print "Candidate Number | Matric Number | Papar 1 Score | Paper 2 Score | Total Score"
 Print
"**
********"

 For Kounter = 1 To 20
 Print Kounter, Space(15); MatricNo(Kounter), Space(15); Paper1(Kounter), Space(15);
Paper2(Kounter), Space(15); Total(Kounter)
 'Print MatricNo(Kounter)
 'Print Paper1(Kounter)
 'Print Paper2(Kounter)
 'Print Total(Kounter)
 Next
 Paper1_Avg = TotalMark_Paper1 / 20
 Paper2_Avg = TotalMark_Paper2 / 20
 Overall_Avg = Overall_Total / 20

 Print
 Print "The Total Paper One Average is "; Paper1_Avg
 Print "The Total Paper Two Average is "; Paper2_Avg
 Print "The Overall Average of all the paper is "; Overall_Avg
End Sub
Object Screen

A Program to evaluate the expression X5 + Y4 + Z3

Source Code

A program to read in 3 numbers and print them in descending order.
Source Code
Private Sub Form_Activate()
' A program to Arrange Number of Array in Descending order
 Dim Total, K, I, J, Swap As Integer

 Total = Val(InputBox("Enter Total Number of Element to be Arranged ", "Descending Order"))
 Dim A(1000) As Integer
 'Enter List of Array to Rearrange
 For K = 1 To Total
 A(K) = Val(InputBox("Enter the List of Array to Rearrange " & K, "Array Elements"))
 Next
 For K = 1 To Total
 Print A(K)
 Next
 Print "***********************Arrange in Descending Order********"

 'Code that rearrange the list of Array in descending order
 For K = 1 To Total
 For J = 1 To K
 If (A(J) < A(K)) Then
 Swap = A(K)
 A(K) = A(J)
 A(J) = Swap
 End If

 Next
 Next

 'Print the Descending Order Arrangement
 For I = 1 To Total
 Print A(I)
 Next
End Sub
Object Screen

A Program to enable a computer to be used as a simple calculator
Source Code
Private Sub Form_Activate()
Dim First_Num, Second_Num As Integer
Dim Answer As Single
Dim Operator, Response As String
 'Supply Values for the Operand
upcome:
 First_Num = Val(InputBox("Enter value for the Operand First_Number ", "First Number"))
 Second_Num = Val(InputBox("Enter value for the Operand Second_Number ", "Second Number"))

 Operator = InputBox("What Operator do you want to you? e.g +,-,/,*", "Enter Operator")

 If Operator = "+" Then
 Answer = First_Num + Second_Num
 MsgBox "The Sum of Two Operands is " & Answer
 ElseIf Operator = "-" Then
 Answer = First_Num - Second_Num
 MsgBox "The Sum of Two Operands is " & Answer
 ElseIf Operator = "/" Then
 Answer = First_Num / Second_Num
 MsgBox "The Sum of Two Operands is " & Answer
 ElseIf Operator = "*" Then
 Answer = First_Num * Second_Num
 MsgBox "The Sum of Two Operands is " & Answer
 Else

 MsgBox "Invalid Operator Entered, Try Again", vbCritical
 End If

 Times = InputBox("Please how many Times do you want to perform this operation? e.g 2,3...", "Loop
Operations")
 For I = 1 To Times
 Response = InputBox("Do you want to perform another Operation? Y or N", "Decision Making")
 If Response = "Y" Then
 GoTo upcome
 Else
 MsgBox "Thank you for using this Simple Calculator", vbInformation, "Thank you God
Bless You"
 Exit Sub
 End If
 Next
End Sub
Object Screen

A

Program to perform positive integer multiplication and division.
Source Code
Private Sub Form_Activate()
' A Program to Display list of operation to perform on two operand
 Dim options As String
 Dim X, Y As Integer
 Dim Ans As Single
 Ans = 0

 options = InputBox("Select Options: A -> Multiplication, B -> Division, C -> Addition, D ->
Substraction", "Selection")
 If options = "A" Then
 MsgBox "You are just Selected to Perform Multiplication Operation", vbInformation, "Information"
 X = Val(InputBox("Supply Value for X ", "X Value"))
 Y = Val(InputBox("Supply Value for Y ", "Y Value"))
 Ans = X * Y
 MsgBox "The Product of Two variables is " & Ans, vbInformation, "Display Output"
 ElseIf options = "B" Then

 MsgBox "You are just Selected to Perform Division Operation", vbInformation, "Information"
 X = Val(InputBox("Supply Value for X ", "X Value"))
 Y = Val(InputBox("Supply Value for Y ", "Y Value"))
 If X <> 0 And X <= Y Then
 X = X - Y
 Ans = Ans + 1
 Else

 Ans = X / Y
 End If
 MsgBox "The Division of Two variables is " & Ans, vbInformation, "Display Output"
 ElseIf options = "C" Then
 MsgBox "You are just Selected to Perform Addition Operation", vbInformation, "Information"
 X = Val(InputBox("Supply Value for X ", "X Value"))
 Y = Val(InputBox("Supply Value for Y ", "Y Value"))
 Ans = X + Y
 MsgBox "The Sum of Two variables is " & Ans, vbInformation, "Display Output"
 ElseIf options = "C" Then
 MsgBox "You are just Selected to Perform Substraction Operation", vbInformation, "Information"
 X = Val(InputBox("Supply Value for X ", "X Value"))
 Y = Val(InputBox("Supply Value for Y ", "Y Value"))
 Ans = X - Y
 MsgBox "The Differences of Two variables is " & Ans, vbInformation, "Display Output"
 Else
 MsgBox "Invalid Entry, Please Try Again", vbCritical, "Error"
 End If
 End Sub

Object Screen

A program using file structure to create the
file of student’s records
Source Code
Dim Lv As ListItem
Private Sub CmdCode_Click()
Dim N, No_Std, C, D, Q, W As Integer
Dim A, B, E, F, G, H As Integer
Dim Student_Name As String
Dim Sexcode, Matric_No, Statecode As Integer
 A = 0
 B = 0
 C = 0
 D = 0
 E = 0
 F = 0
 G = 0
 H = 0
 Q = 0
 W = 0

 No_Std = Val(InputBox("Please Enter the Number of Student in Osustech", "Number of Student"))
 For N = 1 To No_Std
 Student_Name = InputBox("Please Enter Student Name", "Student Name of 30 Character")
 Matric_No = Val(InputBox("Please Enter the Student Matric Number", "Matric Number"))
 If Matric_No >= 0 Then
 Statecode = Val(InputBox("Enter State code from range 1 to 8", "State Code"))

 If Statecode = 1 Then
 A = A + 1
 ElseIf Statecode = 2 Then
 B = B + 1
 ElseIf Statecode = 3 Then
 C = C + 1
 ElseIf Statecode = 4 Then
 D = D + 1
 ElseIf Statecode = 5 Then
 E = E + 1
 ElseIf Statecode = 6 Then
 F = F + 1
 ElseIf Statecode = 7 Then
 G = G + 1
 ElseIf Statecode = 8 Then
 H = H + 1
 Else
 MsgBox "No Such Code in the File", vbCritical, "Error Input"
 End If
 Sexcode = (InputBox("Enter Sex code 0 for Female, 9 for Male", "Sex Code"))
 If Sexcode = 0 Then
 Q = Q + 1
 ElseIf Sexcode = 9 Then
 W = W + 1
 Else
 MsgBox "No Such Code in the File", vbCritical, "Error Input"
 End If
 End If
 Next

 frmStd_Rec.Height = 9840
 txtDisplay.Text = txtDisplay.Text & "The Total Number of Students in this process are : " & No_Std &
vbCrLf
 txtDisplay.Text = txtDisplay.Text & "Number of Male Students are : " & Q & vbCrLf
 txtDisplay.Text = txtDisplay.Text & "Number of Female Student are : " & W & vbCrLf

 txtOutput.Text = txtOutput.Text & "State Code" & Space(10) & "Number of Students" & vbCrLf
 txtOutput.Text = txtOutput.Text & "**" & vbCrLf
 txtOutput.Text = txtOutput.Text & "1" & Space(30) & A & vbCrLf
 txtOutput.Text = txtOutput.Text & "2" & Space(30) & B & vbCrLf
 txtOutput.Text = txtOutput.Text & "3" & Space(30) & C & vbCrLf
 txtOutput.Text = txtOutput.Text & "4" & Space(30) & D & vbCrLf
 txtOutput.Text = txtOutput.Text & "5" & Space(30) & E & vbCrLf
 txtOutput.Text = txtOutput.Text & "6" & Space(30) & F & vbCrLf
 txtOutput.Text = txtOutput.Text & "7" & Space(30) & G & vbCrLf
 txtOutput.Text = txtOutput.Text & "8" & Space(30) & H & vbCrLf

End Sub

Object Screen

A program that accepts integer value from right to left and prints it from left to right
Source Code
Private Sub Form_Activate()
Dim R, G, N, V As Integer
 N = Val(InputBox("Supply any Five Integer Number", "Reverse Integer"))
 G = N
 Print "You Input "
 Print G
 V = 0

 Do While (G > 0)
 R = Int(G Mod 10)
 V = Int(V * 10) + R
 G = Int(G / 10)
 Loop
 Print " the output is "
 Print V
End Sub
Object Screen

A program that accepts positive integer as input and
finds the sum of the digits that make up the integer.
Source Code
Private Sub Form_Activate()
'Add up any Given Integer Number

 Dim R, N, Sum, GV As Integer
 Sum = 0

 N = Val(InputBox("Supply an Integer Number", "Integer"))
 GV = N
 Print "The Given Number is "
 Print GV
 Do While (GV <> 0)
 R = GV Mod 10
 Sum = Sum + R
 GV = GV / 10

 Loop
 Print
 Print "The Sum of the Given Number is "
 Print Sum
End Sub
Object Screen

A Program to test for palindrome
Source Code
Dim A, B As String
Private Sub Command1_Click()
A = (Text1.Text)
B = StrReverse(A)
If (B = A) Then
Text2.Text = A & " " & "Gives" & " " & B & vbNewLine & "This is a Pallindrone"
Else
Text2.Text = A & " " & "Gives" & " " & B & vbNewLine & "This is not a Pallindrone"
End If

End Sub

Private Sub Command2_Click()
End
End Sub

A

Program to find the range of a set of numbers, where range is defined as the difference between the
biggest and the smallest numbers in a set.
Source Code
Private Sub Form_Activate()
Dim Largest, Smallest, Range As Single
Dim Count, Num As Integer

 Num = (InputBox("Enter the Number of Array to Input", "Largest and Smallest"))
Dim X(1000) As Single
 'Input Value of an Array
 For Count = 1 To Num
 X(Count) = (InputBox("Supply Value into Array Element " & Count, "Array Element"))
 Next
 'Output Value of an Array
 For Count = 1 To Num
 Print X(Count)
 Next
 Largest = X(0)
 For Count = 1 To Num
 If Largest < X(Count) Then
 Largest = X(Count)
 End If
 Next
 Smallest = X(0)
 For Count = 1 To Num
 If Smallest > X(Count) Then
 Smallest = X(Count)
 End If
 Next
Range = Largest - Smallest
Print
Print "The Range of Array Value is "
Print Range
End Sub
Object Screen

A program to determine the nth Fibonacci number.
Source Code
Private Sub Command1_Click()
 If Text1.Text = Empty Then
 MsgBox "Please Supply the Number of Fibonacci Required", vbCritical, "Fibonacci"
 Exit Sub
 End If
txt1.Text = Empty
 A = Text1.Text
 Sum = 0
 j = 0
 k = 1
 txt1.Text = txt1.Text & k & vbCrLf

For i = 2 To A
 Sum = j + k
 txt1.Text = txt1.Text & Sum & vbNewLine
 j = k
 k = Sum
Next
End Sub
Object Screen

Legendre Polynomial with formula Pn=1, P1=x
Source Code
Private Sub Command2_Click()
Dim N, P, X As Single
If Text1.Text = Empty Then
 MsgBox "Please Supply the Number of Fibonacci Required", vbCritical, "Fibonacci"
 Exit Sub
End If
 X = (Text1.Text)
 N = (InputBox("Supply Value of N", "Polynomial"))
 If N = 0 Then
 P = 1
 ElseIf N = 1 Then
 P = X
 Else
 P = ((2 * N - 1) * ((N - 1) / N)) - ((N - 1) * (N - 2) / N)
 End If
 txt1.Text = P
End Sub
Output Screen

A program that creates a file of 15 real numbers
Source Code
Private Sub Form_Activate()
'Read a file of fiften Array Real Numbers
Dim A(15) As Single
Dim B(15) As Single
Dim N, Count, Kounter As Integer

 Count = 0
 Kounter = 0
 (A)
 For N = 1 To 15
 A(N) = (InputBox("Supply Value into the Array " & N, "Array File"))
 txtfile.Text = txtfile.Text & A(N) & Space(2)
 Next
(B)
'New Array to be created from The Above Array File
 For N = 1 To 15
 txtA.Text = txtA.Text & A(N) & Space(2)
 Next
'The File of B(15) to be created from A(15)
 For N = 1 To 15
 B(N) = A(N)
 txtCreated.Text = txtCreated.Text & B(N) & Space(2)
 Next
'Count The Number of Array Elents Greater Than 20 and Less Than 20
(C)
 For N = 1 To 15
 If (A(N) > 20#) Then
 Counter = Counter + 1
 Else
 Kounter = Kounter + 1
 End If
 Next
 txtOutput.Text = txtOutput.Text & "The Number of values Greater Than 20 " & Counter & vbCrLf
 txtOutput.Text = txtOutput.Text & "The Number of values Less Than 20 " & Kounter

End Sub

Object Screen

A program that merges two different linear arrays of values into a new stream
Source Program

Private Sub Form_Activate()
Dim P, R, D As Integer
Dim Swap, J As Integer
 P = Val(InputBox("Enter Size of Array A", "Array A"))
 R = Val(InputBox("Enter Size of Array B", "Array B"))
Dim A(1000), B(1000), C(1000 + 1000) As Integer
 Label5.Caption = P
 Label6.Caption = R
 For D = 1 To P
 A(D) = Val(InputBox("Enter Element into Array A", "Array A"))
 txtA.Text = txtA.Text & A(D) & Space(2)
 Next
 For D = 1 To R
 B(D) = Val(InputBox("Enter Element into Array B", "Array A"))
 txtB.Text = txtB.Text & B(D) & Space(2)
 Next
 For D = 1 To P
 C(D) = A(D)
 Next
 For D = 1 To R
 C(P + D) = B(D)

 Next
 For D = 1 To P + R
 txtC.Text = txtC.Text & C(D) & Space(2)
 Next

 'Code that rearrange the list of Array in descending order
 For D = 1 To (P + R) - 1
 For J = 1 To (P + R) - 1
 If (C(J) > C(J + 1)) Then
 Swap = C(J)
 C(J) = C(J + 1)
 C(J + 1) = Swap
 End If
 Next
 Next
 'Print Ascending Order
 For D = 1 To P + R
 txtAsc.Text = txtAsc.Text & C(D) & Space(2)
 Next

End Sub

Object Program

A Prime that print the table of prime Number
Source Code
Private Sub CmdPrime_Click()
Dim I, J, Num, Prime As Integer
Prime = 1
Num = Val(txtUpper.Text)
 For I = 2 To Num

 For J = 2 To I - 1
 If I Mod J = 0 Then
 Prime = 0
 Exit For
 Else
 Prime = 1
 End If
 Next J
 If Prime = 1 Then
 txtoutput.Text = txtoutput.Text & I & Space(2)
 End If
 Next I
End Sub
Object Program

A program that converts decimal number to binary
Source Code

Private Sub CmdConvert_Click()
Dim Num, A, B As Integer
 Num = txtNum.Text
 Do While (Num <> 0)
 A = Num Mod 2
 Num = (Num - A) / 2
 txtOutput.Text = txtOutput.Text & A
 Loop
End Sub

Object Program

A program to compute the exponential of ex of a number
Source Code
Private Sub cmdExp_Click()
Dim sum, term, x As Single
Dim i As Integer
x = txtX.Text
sum = 1
term = x
i = 1
Do While (term >= 0.001)
sum = sum + term
i = i + 1
term = (term * x) / i
Loop
lblx.Caption = x
txtsum.Text = sum

txti.Text = i
End Sub

Object Program

A program to compute the computations of iterations between successive approximations becomes less
than 0.001.
Source Program
Private Sub CmdDiff_Click()
Dim Sum, Term1, Term2, Num As Single
Num = 4#
Dim count As Integer
count = 1
 Term1 = (2# * 2#) / (1 * 3)
 Term2 = (Num * Num) / ((Num - 1) * (Num + 1))
 Do While ((Term1 - Term2) >= 0.001)
 Sum = Sum + Term2
 Term1 = Term2
 count = count + 1
 Num = Num + 2#
 Term2 = (Num * Num) / ((Num - 1) * (Num + 1))
 Loop
 txtSum.Text = Sum
 txtIte.Text = count
End Sub

Object Program

A program to reduce fraction to irreducible form, adding 2 fractions and multiplying 2 fractions.
Source Code
Public Sub Irreduciblefra(N As Integer, D As Integer)
 Dim Divisor As Integer
 Divisor = 2
 N = Val(InputBox("Enter Value of Numerator ", "Numerator"))
 D = Val(InputBox("Enter Value of Denumerator ", "Denumerator"))
 While (((N Mod 2) = 0) And ((D Mod 2) = 0))
 N = N / 2

 D = D / 2
 out = N & "/" & D
 MsgBox out
 Wend
End Sub
Private Sub Command1_Click()
 Dim A As Integer
 Dim B As Integer
 'a = txtA.Text
 'b = txtB.Text
 Irreduciblefra A, B
End Sub

Private Sub Command2_Click()
Dim N1, D1, N2, D2 As Integer
 Dim Divisor As Integer
 Dim A, B As Integer
 N1 = Val(InputBox("Enter Value of N1 ", "N1"))
 D1 = Val(InputBox("Enter Value of D1 ", "D1"))
 N2 = Val(InputBox("Enter Value of N2 ", "N2"))
 D2 = Val(InputBox("Enter Value of D2 ", "D2"))
 Divisor = 2

 B = D1 * D2
 A = (((N1 * B) / D1) + ((N2 * B) / D2))
 Do While ((A Mod 2) = 0) And ((B Mod 2) = 0)
 A = A / 2
 B = B / 2
 'MsgBox A & "/" & B
 'Wend
 Loop
 MsgBox A & "/" & B
End Sub

Private Sub Command3_Click()
Dim N1, D1, N2, D2 As Integer
 Dim Divisor As Integer
 Dim A, B As Integer
 N1 = Val(InputBox("Enter Value of N1 ", "N1"))
 D1 = Val(InputBox("Enter Value of D1 ", "D1"))
 N2 = Val(InputBox("Enter Value of N2 ", "N2"))
 D2 = Val(InputBox("Enter Value of D2 ", "D2"))
 Divisor = 2

 A = N1 * N2
 B = D1 * D2
 Do While ((A Mod 2) = 0) And ((B Mod 2) = 0)
 A = A / 2
 B = B / 2
 'MsgBox A & "/" & B
 'Wend
 Loop
 MsgBox A & "/" & B

End Sub
Object Screen

