
4.0 Programming with MATLAB

4.1 M-files

The term “M-file” is obtained from the fact that such files are stored with .m extension. M-files

are alternative means of performing computations so as to expand MATLAB’s problem-solving

capabilities. An M-file consists of series of statements that can be run all at once to execute a

given problem. M-files come in two forms: script files and function files.

4.1.1 Script files

Script file is a series of MATLAB commands that are saved on a file. They are useful for

retaining a series of commands that can be executed in more than one occasion. The script can be

executed by typing the file name in the command window or by invoking the menu selections in

the edit window: Debug, Run.

Example: Develop a script file to compute the velocity of the free-falling body when the initial

velocity is zero.

Solution:

Open the editor with the menu selection: File, New, M-file.

Type in the following statements to compute the velocity of the free-falling body at a specific

time.

g = 9.81; m = 68.1; t = 12; cd = 0.25;

v = sqrt(g * m / cd) * tanh(sqrt(g * cd / m) * t)

Save the file as velfall.m.

Return to the command window and type

>>velfall

The result should be displayed as

v =

50.6175

4.1.2 Function files

Function files are M-files that start with the word function. Unlike script files, function files

can accept input arguments and return outputs.

Examples:

i. Create an M-file called falling.m.
function h = falling(t)

GRAVITY = 32;
h = 1/2*GRAVITY*t.^2;

at the command window, type

y = falling((0:.1:5)');

ii. function w = twosum(x,y)
w = x+y;

type on the command window

>> twosum(1,2)

>> x = [1 2]; y = [3 4];

>> twosum(x,y)

>> A = [1 2; 3 4]; B = [5 6; 7 8];

>> twosum(A,B);

iii. function s = threesum(x,y,z)% threesum Add three variables

% and return the result

s = x+y+z;

>> a = threesum(1,2,3);

>> b= threesum(7,8,9);

iv. function [s,p] = addmult(x,y)

% addmult Compute sum and product

% of two matrices

s = x+y;

p = x*y;

>> [a,b] = addmult(3,2)

>> v = addmult(3,2)

4.2 Flow Control
MATLAB flow control consists of the following:

•if statements

•switch statements

•for loops

•while loops

•continue statements

•break statements

if
The if statement is fundamental in decision-making for all computing languages. It evaluates a

logical expression and executes a group of statements when the expression is true. The optional

elseif and else keywords provide for the execution of alternate groups of statements. An end

keyword, which matches the if, terminates the last group of statements.

e.g:

i. x = 0

if x == 0

disp(’x equals zero’)

end

ii. x = 2;

if x < 0

disp(’neg’)

else disp(’non-neg’)

end

iii. MATLAP script to compute the root of a quadratic equation

ax2 + bx + c = 0.

a = 2;
b = -10;
c = 12;
d = b^2 - 4*a*c;
if a ~= 0

if d < 0
disp('Complex roots')
else
x1 = (-b + sqrt(d)) / (2*a)
x2 = (-b - sqrt(d)) / (2*a)
end % first end
end

switch

The switch statement executes groups of statements based on the value of a variable or

expression. There must always be an end to match the switch.

e.g:

d = floor(10*rand);
switch d
case {2, 4, 6, 8}
disp('Even');
case {1, 3, 5, 7, 9}
disp('Odd');
otherwise
disp('Zero');
end

for
The for loop repeats a group of statements for specified number of times. A matching end

delineates the statements.

i. for n = 3:32

r(n) = rank(magic(n));
end
r

ii. for i = 1:m
for j = 1:n
H(i,j) = 1/(i+j);
end
end

while
The while loop repeats group of statements indefinite number of times under logical control

condition. A matching end delineates the statements.

A complete program illustrating while, if, else, and end, is written as:

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
x = (a+b)/2;
fx = x^3-2*x-5;
if sign(fx) == sign(fa)
a = x; fa = fx;
else
b = x; fb = fx;
end
end
x

continue

The continue statement passes control to the next iteration of the for or while loop in which it

appears, skipping any remaining statements in the body of the loop. In nested loops, continue

passes control to the next iteration of the for or while loop enclosing it.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line) | strncmp(line,'%',1)
 continue
 end
 count = count + 1;
end
disp(sprintf('%d lines',count));

break

The break statement lets allow early exit from a for or while loop. In nested loops, break exits

from the innermost loop only.

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
x = (a+b)/2;
fx = x^3-2*x-5;
if fx == 0
break
elseif sign(fx) == sign(fa)
a = x; fa = fx;
else
b = x; fb = fx;
end
end

4.3 Function of Functions

A class of functions, called “function functions,” works with nonlinear functions of a scalar

variable. That is, one function works on another function. The function functions include:

•Zero finding

•Optimization

•Quadrature

•Ordinary differential equations

function y = humps(x)

y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;

Evaluate this function at a set of points in the interval 10  x in command window as follow:

>>x = 0:.002:1;

>>y = humps(x);

Then plot the function with

plot(x,y),title('Polyfunction'),xlabel('x'),ylabel('y')

p = fminsearch(@humps,0.5) % finds the value of x where the function is minimum.

p =

 0.6370

To evaluate the function at the minimum,

humps(p)

ans =

 11.2528

Q = quadl(@humps,0,1) % computes the area under the curve in the graph

Q =

 29.8583

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100
Polyfunction

x

y

