TYPES OF SIGNAL TRANSMISSION

The electrical signals produced by encoders are of two types, namely analogue signals and digital
signals. These two types of signals results in two types of signal transmission:

1. Analogue signal transmission which is used in a communication that involves the

transmission of analogue signals from the transmitter to the receiver. Analogue signals
continuously vary with time. They are sinusoidal in nature and usually have harmonics.
They represent the variations of physical quantities such as sound, pressure, temperature,
etc. and are represented by voltage waveforms that have different amplitudes at different
instants of time. Examples of analogue signal transmissions are voice transmission through
a telephone line, Radio and TV broadcast to the general public. Sometimes analogue
signals are first converted into digital signals before being transmitted.

Digital signal transmission which is used in a communication that involves the
transmission of digital signals from the transmitter to the receiver. Digital signals are not
continuous. They are made up of pulses which occur at discrete intervals of time. The
pulses may occur singly at a definite period of time or as a coded group. These signals play
a very important role in the transmission and reception of coded messages. Examples of
digital signals are

a. Telegraph signal which is generated by a telegraph and teleprinter which are the
most common instruments being used to transmit written text in the form of coded
signals.

b. Radar signal which is generated by a radar (a device being used to find out the
location of distant objects in terms of location and bearing by transmitting a short
period signal and beaming it to the location of the target. The reflected signal is
picked up by the radar

c. Data signals which are generated by several devices and are required to transmit
data from one place to another. The data to be transmitted are converted into
electrical pulses before transmission is done.

SIGNAL SPECTRUM

Plotting the amplitude of a signal at various instants of time is used to represent the signal in the
Time domain. Plotting the amplitudes of the different frequency components is termed the
frequency domain representation. This plot gives the spectral component amplitudes of the signal
against frequency.
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Analogue signals when analysed are found to comprise of certain fundamental frequencies and
their harmonics. They occupy only a small portion of the frequency spectrum which is termed as
the Discrete spectrum.

The analysis of digital signals on the other hand gives an infinite number of frequencies. Such a
spectrum is termed as Continuous spectrum.

SIGNAL ANALYSIS

Signals are single valued functions of time (t) and are of complex nature. No matter how complex
a signal wave form may be, it comprises of one or more sine and / or cosine functions. Assume that
we have a square wave given by the expression 1.1
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The signal is represented by the figure 1.

f(c)
f(t)
1 /
0 U 21 S
-1

Fig. 1a A square wave function f(t).

Let us try to see how a sine function of the same time period can be used to represent this square
wave form.
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Fig. 2a. A square wave function f(t) and two sine wave functions.
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Fig2(b), (c), (d): A square wave function approximated by a sine wave function.

In Fig2a, we introduced a sine function marked X, having the same peak magnitude as the square
wave f(t), hence its magnitude is equal to the square wave only at the peak point indicating that it
IS a very poor representation or approximation of the square wave.

If the magnitude of the sine wave X, is increased as shown by the sine wave Y, its magnitude
becomes equal to the sine wave magnitude at two points. This provides an approximation slightly
better than the first curve even though it is still a very poor approximation.

In figure 2b, another sine wave component is added to improve the approximation. This
component has a frequency thrice the first component. It is easily seen that this provides a better
approximation. The approximated wave approaches more closely to the square wave when more
sine wave components are added. As shown in Figure 2c-2d.

The graphical method of approximating one function to another gives a clear understanding but is
difficult to use in practice, hence it is always necessary to use analytical methods of approximating
the square wave function with a sine wave function.

Consider two signals f(t) and g(t). Assume that f(t) is to be approximated in terms of g(t) over the
interval (t;-t2). This approximation may be written as;

f®)=C.g(t) fOr (L1<t<ED) 2

Where C is a constant and has a value such that error between the actual function and the
approximated function is minimum over the time-interval considered. If the error function if
denoted as £, (t) = F(£) = €. G(L) vv ve cer eee et cee e e et et et ete e e en et een eae e e e 003

One possible method of minimizing the error f,(t) over this time-interval is to minimise the

average value of the error f,(t). In other words average error {i fttlz [f(t) —C. g(t)]dt} should

be kept minimum. However, there may occur large positive and negative errors in the
approximation which cancel each other in the average giving false indication that the error is
minimum.

The situation may be improved if average or mean of the squares of the error denoted by ¢ is
minimised, instead of the error itself. In other words,
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Minimum value of £ can be obtained for a value of C which makes % =0

or s {21 - C.g(ode} = 0
Therefore, — {ftzf (t)dt — 2Cf F(O). g(®)dt + sz g2(t) dt}
Interchanging the order of integration and differentiation

! tzifz(t)dt—zi Cftzf(t) (t)dt +—C2f 2(t)dt; =0
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Therefore the expression becomes,

)
t, — t, —2 . f(t)-g(t)dt+2Cfg2(t) dtb =0
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Therefore C= ftzg ot

Equation 5 gives the value of C for obtaining the best approximation.

ORTHOGONAL FUNCTIONS

Yo

Fig. 3. Representation of a vector in 3 coordinates



The concept of orthogonality can be understood by considering the example of Vector A
represented by Fig 3.

If ay, ay and &, are the unit vectors along X, y and z axes, then vector components along the three
axes are Xo. ax, Yo. @y and zo. a, respectively so that
A= X0 QxF Y0: By T Z00 Bzecneneniee e 6
Since the three vector are mutually perpendicular, the dot product will be
a.a,=a.a,=a.a.= 0
and - a.a. = a.a,=a.a, = 1

This can be described by the general expression of equation 7 which gives the condition for
orthogonality.

0O m#n
a,.a, = T

where m and n can have any value x, y and z.

The concept of three dimensional vector representation may be extended to n-dimensional
representation with n-mutually perpendicular coordinates. If unit vectors along these coordinates
are X, X, ...... X,,, then a vector A in this coordinate system can be represented as:

A= C Oy #CH b, Ciit

where C,, C, .... C, are the component.s. of vector A alongthese coordmates ..................... i
Equation 6 may be rewritten as
X, X, ={O m¢n} :
e PP PRTOUPPPPPP 9
Taking the dot product of both sides of Eq. 1.9 with the unit vector X,, we obtain
AX=CX.X;+CX, CX; X, +..C. X, X; + .. CX X,
But the dot product C,,. X,,. X; =0 (m # j) so that only one term is left on the right side of
this expression
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The set of mutually perpendicular vectors (X, X, ... X)) is called an orthogonal vector space.

The product XX, may have some constant value Ky, instead of unity so that Eq. 9 may be
rewritten as

0 m#n
X X =
{kmm”} .............................................................................. 11.

A X, = X X; = CK;
X,

K ;

or C,;, = A.
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When two signal are orthogonal o
C, =



Equation 1.5 then becomes
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Example 1.1. Show that the functions sin nwt and cos mwt are orthogonal over the interval

T
fo- o +’m— where n and m are any integers.
0

Solution. Let fr) = sin n g ?

and g () =cosm W t
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Since C = O, the two functions are orthogonal.
Similarly, it can be shown that sin 7 @z and sinm wr and also cos n w? and cos m w? are’
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orthogonal. ’ v
Example 1.2. Derermine the magnirude of the curve marked Y in Fig. 1.6 to ensure that }

mean square error is minimum when approximated to the square wave function.
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ORTHOGONALITY IN COMPLEX FUNCTIONS

The pfevious discussion of orthogonality was limited to functions of real variables. Iff@®
zmd & (9) ar€ complex functions of real variable ¢, then £ (#) may be approximated over the interval
1, 1,) as

f)=Ce)
It can be shown that the optimum value of C to ensure minimum mean square error is
given as

[ r@ g a
C=—"A

leg(t)g*(t)dt (G )

where g’i‘(t) is conjugate of g(). : :
The condition for orthogonality of the two functions is obtained by equating Eq. 1.14
to zero. .

: 5 [
ie., L £ g*@) d = J: F*@® g@)=0
where £ 7(2) is conjugate of 7).

where £ "(») is conjugate of Rz).
For a mutually orthogonal set of complex functions over the interval (z,, 7,), condition for
orthogonality is given by Eq. 1.15

5 - O m#=n
f.. f”'(’)f"(')d'_{l m=n} e [1.15 (]
If g(#) is a complete set of function, then function f{r) can be expressed as 1
RO =C,8, @ + Cy8;5() + .... + C,g, () ... [1.15 (B)]

where Co =[P r@ g ar
. n L

It should be remembered that in case of real functions g'(t) = g(0).

APPROXIMATING A FUNCTION BY A SET OF MUTUALLY ORTHOGONAL FUNCTIONS

Assume a set of function,
£, g, (;) ... &, () orthogonal to one another over an interval of ¢, to 7,.

0 j#k
We know that 8; () g (@)= K j=k

When j=k=ng2@® =K,
If a function f{#) is to be approximated over an interval (¢, to 7,) by the above set of

functions, then
f@=Cig, (@) +Cogr @)+ ...C,8,()

=D C 8. ® ... (1.16)
The mean square error € is given as
1 L n >
===t — di
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Since, the mean square error £ is function of constants C,;, C, ... C,, minimum value of e
will be obtained when
Se. .08 8 _o
3¢ o K.

It can be easily shown that minimum value of mean square error will be obtained when

[ rawe,aar

= -
J"* g3 () dt
'

<y ... (1.18)
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In order to obtain the best approximation with minimum mean square error, the coefficients
C,, C, .... C, should be chosen as given in Eq. 1.19.

EVALUATION OF MEAN SQUARE ERROR
The mean square error “e” given is determined by the use of equation 1.17.
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= (tz—t,)[-rz, Sy dt+21 J-,, Crgn (@) de 22'“_& C,f()g, @ dl] . (1.20)

1
But from Eq. 1.19: [ f(®)e, (0 dt=C,. K,
'
z
Also J.’zg,z,(i)dt = K, . Substituting these values in Eq. 1.20.
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Equation. 1.22 shows that the mean square error can be decreased by increasing n in the
approximation. When 7 is increased to infinity, the error becomes zero. Under this condition

t Aol
[Crive= 3 cik, L
A n=1
and RO = C18,(0) + Cr85@®) - + Cog, (D (n—> o2) o (1424)

The series is said to converge in the mean. Eq. 1.24 is known as the Generalised Fourier
Series representation of the function f(z).

Assignment: Determine the values of constants C1, C2, ....... C7 in the approximated waveform of
the figure below. Also calculate the mean square error.

:(:) o 2 (sint+ L sin 3t+L sin St +L sin 71)
1 ZEoN

o \. 7|" -
(C) : s ; B
Solution. The approximated function may be written as
A1) =C, sint+ C, sin 2t + C; sin 3¢ + .... C; sin 7¢
The value of constant C, is determined by the use of Eq. 1.18.

X

27
J'o F@)sinne de
() Gl e
3 J-o sin” nr dt

£ 21
(I sin nz dt —J- sin nz dt)
o n

J'z" 1—cos nz
o 2

dt

—l[cos ntly — l[cos nelZ™
n n
l[z _sin nz :IZ“
2 n o

A [cos nz1g§ — 2 fcos nz 2™
n n

1[, _sinrnz ki
2 n




e e e Sy R L S o
7T 37 57t 77T
4 1 1 1
= —| sin 7+ — sin 32+ — sin 57 + — sin 7z
n( 3 S 7 ]

() The mean square error & is given by Eq. 1.17
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if 2 is even
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= 0.051

It can be summarised from the example above that as the number of terms is increased in the
approximation, the mean square error isteduced. Representation of a function over an interval by
a linear set of mutually orthogonal functions is termed the Fourier Series representation. Since
there exists a large number of sets of orthogonal functions, a function may be represented in terms
of different sets of orthogonal functions. This is analogous to the representation of a vector using
different coordinate systems.



