
CSC 214: INTRODUCTION TO DATA MANAGEMENT
Introduction to DBMS and Relational Theory

Course

Course code: CSC 214
Course title: Data Management I
Credit unit: 2
Course status: Compulsory

INTRODUCTION TO THE COURSE

COURSE DESCRIPTION
CSC 214 is a comprehensive introduction to theories and practices in Database
Design and Management. Database Management I concentrates on principles,
design, implementation and application of Database Management Systems.
Students are introduced to the fundamental theories, concepts and techniques
needed to properly understand and implement the relational database model
which is the bedrock of today’s mainstream database products.

COURSE JUSTIFICATION
An in-depth understanding of the principles and application of database systems
is a critical success factor for information professionals taking leadership
roles in future information systems initiatives. This course offers students the
opportunity of rigorous study of the traditional principles of database design,
implementation and usage.

COURSE OBJECTIVES
Upon successful completion, students should be able to:

§ Demonstrate good knowledge of basic database concepts, including the
structure and operation of the relational data model.

§ Understand and successfully apply logical database design principles,
including E-R diagrams and database normalization.

§ Assess the quality and ease of use of data modelling and diagramming tools.
§ Design and implement a small database project.
§ Describe and discuss selected advanced database topics, such as distributed

database systems and the data warehouse.

COURSE CONTENTS
Information storage & retrieval, information management applications. Information
capture and representation, analysis & indexing, search, retrieval, information
privacy; integrity, security; scalability, efficiency and effectiveness.
Introduction to database system:
Components of database systems DBMS functions, Database architecture and data
independence. Data modelling, Entity-relationship model, Database, design using
entity-relationship and semantic object models, Relational data model, process of
database design.

COURSE REQUIREMENT
There are no formal prerequisites for this course.

METHOD OF GRADING
Method of grading
S/N GRADING SCORE(%)

1.
Continuous Assessments

• C.AI

7%

• C.AII (Mid-Semester Test)
• C.AIII

15%
8%

2. Assignment
 3. Practical (Laboratory work)/ Case

Studies
4. Final Examination 70%
5. Total 100

Course Delivery Strategies:
Lectures are delivered via electronic media (e-learning platform and power
point presentations) and other available multimedia resources. Students are
also encouraged to work with our programmers and avail themselves of
laboratory facilities for practical work. Students are expected to demonstrate
their understanding of concepts by completing given tasks in class and
submitting assignments as at when due.

Resources used/Reading Material:

Books

§ Database Management System (2Ed) by Raghu Ramakrishtan and Johannes
Gehrke

§ Database Systems: Design, Implementation, and Management (10Ed) by Carlos
Coronel, Steven Morris, and Peter Rob (2012). Cengage Learning, Boston. ISBN-
13: 978-1-111-96960-8

§ Database principles and design (3Ed) by Colin Ritchie (2008). Cengage Learning,
London. ISBN-13: 978-1-84480-540-2.

§ Database System, the complete book (2Ed) by Hector G. M., Jeffrey D. U.,
Jennifer W. (2009). Pearson Education Inc. New Jersey.	ISBN 0-13-606701-8

§ Relational Theory for Computer Professionals by C. J. Date (2013). O’Reilly
Media, Inc. Sebastopol. ISBN: 978-1-449-36943-9

Online resources
§ Database Management Systems Relational, Object-Relational and Object-

Oriented Data Models. Center for Objekt Teknology. Available online:
http://www.cit.dk/COT/reports/reports/Case4/05-v1.1/cot-4-05-1.1.pdf

§ http://www.help2engg.com/dbms/dbms-languages
§ Database Management System by tutorialpoint. Available online

https://www.tutorialspoint.com/dbms/dbms_tutorial.pdf

Data: raw representation of unprocessed facts, figures, concepts or instruction. It
can exist in any form, usable or not. Data are facts presented without relation to
other things. E.g. It is raining

Information: information is data that has been given meaning by way of relational
connection. This "meaning" can be useful, but does not have to be. In computer
parlance, a relational database makes information from the data stored within it.
Information embodies the understanding of some sort. E.g. the temperature dropped
to 15 degrees and then it started raining.

DATABASE
A Database is a shared, integrated computer structure that is repository to:

-End-user data, that is, raw facts of interest to the end user
-Metadata, or data about data describes of the data characteristics and the set
of relationships that link the data found within the db.

A database is a collection of data, typically describing the activities of one or more
related organizations. For example, a university database might contain information
about the following:

§ Entities such as students, faculty, courses, and classrooms.
§ Relationships between entities, such as students' enrollment in courses,

faculty teaching courses, and the use of rooms for courses.

Proper storage of data in a database will enhance efficient

- Data Management
- Data processing
- Data retrieval

Database System
Refers to an organization of components that define and regulate the collection,
storage, management from general management point of view, the DB system is
composed of

Ø Hardware
Ø Software
Ø People –system administrators: database systems operations

§ DB administrators: manage the DBMS and ensure the DB is
§ functioning properly
§ DB designers
§ System analysts and programmers design and implement the

application programs
§ end user

Ø Procedures
Ø Data

DBMS: A database management system (DBMS) is a collection of programs that
manages the database structure and controls access to the data stored in the
database. In a sense, a database resembles a very well-organized electronic filing
cabinet in which powerful software (the DBMS) helps manage the cabinet’s contents

ADVANTAGES OF A DBMS

§ Data independence: This is the technique that allow data to be changed
without affecting the applications that process it. We can change the way the
database is physically stored and accessed without having to make
corresponding changes to the way the database is perceived by the user.
Changing the way the database is physically stored and accessed is almost
always to improve performance; and the fact that we can make such changes
without having to change the way the database looks to the user means that
existing application programs, queries, and the like can all still work after
the change. Application programs should be as independent as possible from
details of data representation and storage. The DBMS can provide an abstract
view of the data to insulate application code from such details.

§ Efficient data access: A DBMS deploys sophisticated techniques to store and
retrieve data efficiently.

§ Data integrity control: the DBMS can enforce integrity constraints on the
data. For example, before inserting salary information for an employee, the
DBMS can check that the department budget is not exceeded. Also, updating the
status for supplier S1 to 200 will rejected, if status values are supposed
never to exceed 100

§ Security Control: the DBMS can enforce access controls that govern what
data is visible to different classes of users.	Users are only allowed to perform
an operation he or she is allowed to carry out on data.

§ Concurrent access and crash recovery: A DBMS schedules concurrent
accesses to the data in such a manner that users can think of the data as being
accessed by only one user at a time. Further, the DBMS protects users from
the effects of system failures.

§ Reduced application development time: Clearly, the DBMS supports many
important functions that are common to many applications accessing data
stored in the DBMS. This, in conjunction with the high-level interface to the
data, facilitates quick development of applications. Such applications are also
likely to be more robust than applications developed from scratch because

many important tasks are handled by the DBMS instead of being implemented by
the application.

DBMS Architecture
The DBMS provides users with an abstract view of the data in it i.e. the system hides
certain details of how the data is stored and maintained from users. A DBMS can be
viewed as divided into levels of abstraction. A common architecture generally used
is the ANSI/SPARC (American National Standards Institute - Standards Planning and
Requirements Committee) model.
The ANSI/SPARC model abstracts the DBMS into a 3-tier architecture as follows:
External level
Conceptual level
Internal level

ANSI/SPARC 3-tier DBMS architecture

i. External level: The external level is the user’s view of the database and closest

to the users. It presents only the relevant part of the DBMS to the user. E.g. A
bank database stores a lot more information but an account holder is only
interested in his/her account details such as the current account balance,
transaction history etc. An external schema describes each external view. The
external schema consists of the definition of the logical records and the
relationships in the external view. In the external level, the different views may
have different representations of the same data.

ii. Conceptual level: At this level of database abstraction, all the database entities
and relationships among them are included. Conceptual level provides the
community view of the database and describes what data is stored in the database
and the relationships among the data. In other words, the conceptual view
represents the entire database of an organization. It is a complete view of the data
requirements of the organization that is independent of any storage
consideration. The conceptual schema defines conceptual view. It is also called
the logical schema. There is only one conceptual schema per database. The figure
shows the conceptual view record of a data base.

iii. Internal level or physical level: The lowest level of abstraction is the
internal level. It is the one closest to physical storage device. This level is also
termed as physical level, because it describes how data are actually stored on the
storage medium such as hard disk, magnetic tape etc. This level indicates how the
data will be stored in the database and describe the data structures, file
structures and access methods to be used by the database. The internal schema
defines the internal level. The internal schema contains the definition of the
stored record, the methods of representing the data fields and accessed methods
used. The figure shows the internal view record of a database.

DBMS LANGUAGES
The workings of a DBMS is controlled by four different languages, they are

Ø Data Definition Language (DDL):	Used by the DBA and database designers to
specify the conceptual schema of a database. In many DBMSs, the DDL is also
used to define internal and external schemas (views). In some DBMSs, separate
storage definition language (SDL) and view definition language (VDL) are used
to define internal and external schemas. SDL is typically realized via DBMS
commands provided to the DBA and database designers. Some examples include:

Ø CREATE - to create objects in the database
Ø ALTER - alters the structure of the database
Ø DROP - delete objects from the database
Ø TRUNCATE - remove all records from a table, including all spaces

allocated for the records are removed
Ø COMMENT - add comments to the data dictionary
Ø RENAME - rename an object

Ø Data Manipulation Language (DML): these statements managing data within

schema objects. They specify database retrievals and updates. DML commands
(data sublanguage) can be embedded in a general-purpose programming
language (host language), such as COBOL, C, C++, or Java.

Ø A library of functions can also be provided to access the DBMS from a
Ø programming language
Ø Alternatively, stand-alone DML commands can be applied directly (called

a query
Ø language).

Some examples in SQL include:
Ø SELECT - Retrieve data from the a database
Ø INSERT - Insert data into a table

Ø UPDATE - Updates existing data within a table
Ø DELETE - deletes all records from a table, the space for the records

remain
Ø MERGE - UPSERT operation (insert or update)
Ø CALL - Call a PL/SQL or Java subprogram
Ø EXPLAIN PLAN - explain access path to data
Ø LOCK TABLE - control concurrency

Ø Data Control Language (DCL): used for granting and revoking user access on

a database
Ø To grant access to user – GRANT
Ø To revoke access from user – REVOKE

Ø Transaction Control (TCL): Statements are used to manage the changes made

by DML statements. It allows statements to be grouped together into logical
transactions.

Some examples include:

Ø COMMIT - save work done
Ø SAVEPOINT - identify a point in a transaction to which you can later roll

back
Ø ROLLBACK - restore database to original since the last COMMIT
Ø SET TRANSACTION - Change transaction options like isolation level and

what rollback segment to useIn practical data definition language, data
manipulation language and data control languages are not separate
language; rather they are the parts of a single database language such
as SQL.

Example

Write the SQL code that will create the table structure for a table named EMP_1.
This table is a subset of the EMPLOYEE table. The basic EMP_1 table structure is
summarized in the following table. EMP_NUM is the primary key and JOB_CODE is the
FK to JOB.

Hint: Primary Key cannot contain null value

CREATE TABLE EMP_1(
EMP_NUM CHAR(6) NOT NULL,
EMP_LNAME VARCHAR(15),
EMP_FNAME VARCHAR(15),
EMP_INITIAL CHAR(1),
EMP_HIREDATE DATE,
JOB_CODE CHAR(3),
PRIMARY KEY (EMP_NUM),
FOREIGN KEY(JOB_CODE) REFERENCES JOB (JOB_CODE)
) ;

Having created the table structure in (a), write the SQL code to enter the first two
rows for the table EMP_1 below:

INSERT INTO EMP_1
(EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_HIREDATE, JOB_CODE)
VALUES
("101", "News", "John", "G", "08-Nov-00", "502"),
("102", "Senior", "David", "H", "12-Jul-89", "500");

Assuming the data shown in the EMP_1 table have been entered, write the SQL code
that will list all attributes for a job code of 502.

SELECT * FROM EMP_1
WHERE JOB_CODE = ‘502’;

Write the SQL code that will save the changes made to the EMP_1 table.

COMMIT WORK;
NB: WORK is optional.

DBMS Data Model
A data model is a notation for describing data or information. The description
generally consists of three parts:

i. Structure of the data: The data structures used to implement data in the
computer are sometimes referred to, in discussions of database systems, as
a physical data model.

ii. Operations on the data: In database data models, there is usually a limited
set of operations that can be performed but dba can describe database
operations at a very high level, yet have the database management system
implement the operations efficiently.

iii. Constraints on the data. Database data models usually have a way to
describe limitations on what the data can be. These constraints can range
from the simple (e.g., “a day of the week is an integer between 1 and 7” or “a
movie has at most one title”) to some very complex limitations.

Traditionally, there are four DBMS. These four data models also represent the
historical developments of the DBMS:

Hierarchical Database Model
This is the oldest DBMS data model. In this model, information is organized as a
collection of inverted trees of records. The record at the root of a tree has zero or
more child records; the child records, in turn, serve as parent records for their
immediate descendants. This parent-child relationship recursively continues down
the tree. The records consist of fields, where each field may contain simple data
values (e.g. integer, real, text)., or a pointer to a record. The pointer graph is not
allowed to contain cycles. Some combinations of fields may form the key for a record
relative to its parent. Only a few hierarchical DBMSs support null values or

variable-length fields.

	 	
 Example of Hierarchical data model

Applications can navigate a hierarchical database by starting at a root and
successively navigate downward from parent to children until the desired record is
found.
Searching down a hierarchical tree is very fast since the storage layer for
hierarchical databases use contiguous storage for hierarchical structures. All
other types of queries require sequential search techniques. A DDL for hierarchical
data model must allow the definition of record types, fields types, pointers, and
parent-child relationships. And the DML must support direct navigation using the
parent-child relationships and through pointers.
Limitations

Ø Hierarchical model only permits one to many relationship. The concept of
Logical relationship is often used to circumvent this limitation. Logical
relationship superimpose another set of connection between data items
separate from the physical tree structure. This of course increases its
complexity

Ø Often a natural hierarchy does not exist and it is awkward to impose a parent-
child relationship. Pointers partially compensate for this weakness, but it is
still difficult to specify suitable hierarchical schemas for large models and
this means Programs have to navigate very close to the physical data structure
level, implying that the hierarchical data model offers only very limited data
independence.

Ø Lack of ad hoc query capability placed burden on programmers to generate code
for reports

Network model:		
It represents complex data relationships more effectively than the hierarchical
model. The major improvement is that the one-to-many limitation was removed; the
models still views data in a hierarchical one-to-many structure but now record may
have more than one parent. Network data models represent data in a symmetric
manner, unlike the hierarchical data model (distinction between a parent and a
child). Information is organized as a collection of graphs of record that are related
with pointers. More flexible than a hierarchical data model and still permits
efficient navigation.

Example of network data model
The records consist of lists of fields (fixed or variable length with maximum
length), where each field contains a simple value (fixed or variable size). The
network data model also introduces the notion of indexes of fields and records, sets
of pointers, and physical placement of records. A DDL for network data models must
allow the definition of record types, fields types, pointers and indexes. And the DML
must allow navigation through the graphs through the pointers and indexes.
Programs also navigates closely to the physical
storage structures, implying that the network data model only supports limited data
independence, and are therefore difficult to maintain as the data models evolve over
time.

Concepts introduced under the network model include:

§ Schema: conceptual design of the entire database usually managed by the dba
§ Sub-schema: virtual view of portions of the database visible to application

programmers
§ Data management language: enables definition of and access to the schema and

sub-schema. It consist of DDL to construct the schema and DML to develop
programs

§ Data Definition Language
Limitations

Ø Cumbersome
Ø Lack of ad hoc query capability placed burden on programmers to generate code

for reports
Ø Structural change in the database could produce havoc in all application

programs

The relational database Model

Developed by E.F. Codd (IBM) in 1970, the relational data model has a mathematical
foundation in relational algebra. The model is based on first-order predicate logic
and defines a table as an n-ary relation. Data is organized in relations (two-
dimensional tables). Each relation contains a set of tuples (records). Each tuple
contains a number of fields. A field may contain a simple value (fixed or variable
size) from some domain (e.g. integer, real, text, etc.).

Advantages of relational model

§ Built-in multilevel integrity: Data integrity is built into the model at the field
level to ensure the accuracy of the data; at the table level to ensure that
records are not duplicated and to detect missing primary key values; at the
relationship level to ensure that the relationship between a pair of tables is
valid; and at the business level to ensure that the data is accurate in terms of
the business itself. (Integrity is discussed in detail as the design process
unfolds.)

§ Logical and physical data independence from database applications: Neither

changes a user makes to the logical design of the database, nor changes a
database software vendor makes to the physical implementation of the
database, will adversely affect the applications built upon it.

§ Guaranteed data consistency and accuracy: Data is consistent and accurate due
to the various levels of integrity you can impose within the database. (This will
become quite clear as you work through the design process.)

§ Easy data retrieval: At the user’s command, data can be retrieved either from a
particular table or from any number of related tables within the database.
This enables a user to view information in an almost unlimited number of ways.

One commonly perceived disadvantage of the relational database was that software
programs based on it ran very slowly.

Some definitions

RELATION: a relation, as defined by E. F. Codd, is a set of tuples (d1, d2, ..., dn), where
each element dj is a member of Dj, a data domain, for each j=1, 2, ..., n. A data domain
is simply a data type. It specifies a data abstraction: the possible values for the data
and the operations available on the data. For example, a String can have zero or more
characters in it, and has operations for comparing strings, concatenating string, and
creating strings. A relation is a truth predicate. It defines what attributes are
involved in the predicate and what the meaning of the predicate is. In relational data
model, relations are represented in the table format. This format stores the
relation among entities. A table has rows and columns, where rows represent
records and columns represent the attributes. E.g.

TUPLE: A single row of a table, which contains a single record for that relation is
called a tuple. A tuple has attribute values which match the required attributes in
the relation. The ordering of attribute values is immaterial.	Every tuple in the body
of a given relation is required to conform to the heading (attribute) of that relation,
i.e. it contains exactly one value, of the applicable type, for each attribute, and
nothing else besides

ATTRIBUTE: The columns of a relation are named by attributes. Attributes appear at
the tops of the columns. Usually, an attribute describes the meaning of entries in
the column below. For instance, the column with attribute length holds the length,
in minutes, of each movie.

ATTRIBUTE DOMAIN: Every attribute has some predefined value scope, known as
attribute domain

ATTRIBUTE VALUE/INSTANCE: An attribute value is the value for an attribute in a
particular tuple. An attribute value must come from the domain that the attribute
specifies. Most relational DBMS allows NULL attribute values. Each attribute value
in a relational model must be atomic i.e. it must be of some elementary type such as
integer or string. It is not permitted for a value to be a record structure, set, list,
array, or any other type that reasonably can have its values broken into smaller
components.

SCHEMAS: The name of a relation and the set of attributes for a relation is called
the schema for that relation. The schema is depicted by the relation name followed

by a parenthesized list of its attributes. Thus, the schema for relation Movies above
is

Movies (title , year, length, genre)
In the relational model, a database consists of one or more relations. The set of
schemas for the relations of a database is called a relational database schema, or
just a database schema.

Data Types: All attributes must have a data type. The following are the primitive
data types that are supported by SQL (Structured Query Language) systems.

i. Character strings of fixed or varying length. The type CHAR(n) denotes a fixed-
length string of up to n characters. VARCHAR(n) also denotes a string of up
to n characters. The difference is implementation-dependent; typically CHAR
implies that short strings are padded to make n characters, while VARCHAR
implies that an endmarker or string-length is used. Normally, a string is
padded by trailing blanks if it becomes the value of a component that is a fixed-
length string of greater length. For example, the string ’foo’ if it became the
value of a component for an attribute of type CHAR(5), would assume the value
’foo ’ (with two blanks following the second o).

ii. Bit strings of fixed or varying length. These strings are analogous to fixed
and varying-length character strings, but their values are strings of bits
rather than characters. The type BIT (n) denotes bit strings of length n, while
BIT VARYING (n) denotes bit strings of length up to n.

iii. The type BOOLEAN denotes an attribute whose value is logical. The possible
values of such an attribute are TRUE, FALSE.

iv. The type INT or INTEGER (these names are synonyms) denotes typical integer
values. The type SHORTINT also denotes integers, but the number of bits
permitted may be less, depending on the implementation (as with the types int
and short int in C).	

v. Floating-point numbers can be represented in a variety of ways. We may use the
type FLOAT or REAL (these are synonyms) for typical floating point numbers.
A higher precision can be obtained with the type DOUBLE PRECISION. We can
also specify real numbers with a fixed decimal point. For example, DECIMAL(n,d)
allows values that consist of n decimal digits, with the decimal point assumed
to be d positions from the right. Thus, 0123.45 is a possible value of type
DECIMAL(6,2). NUMERIC is almost a synonym for DECIMAL, although there are
possible implementation-dependent differences.

vi. Dates and times can be represented by the data types DATE and TIME,
respectively. These values are essentially character strings of a special form.
We may, in fact, coerce dates and times to string types, and we may do the
reverse if the string “makes sense” as a date or time.

A relational database Schema is depicted by stating both the attributes and their
datatype:
Movies (
title CHAR(IOO),
year INT,
length INT,
genre CHAR(10),
studioName CHAR(30),
producer INT
)

Relation instance: A finite set of tuples in the relational database system
represents relation instance. Relation instances do not have duplicate tuples.

{

<Person SSN# = "123-45-6789" Name = "Art Larsson" City = "San Francisco">,
<Person SSN# = "231-45-6789" Name = "Lino Buchanan" City = "Philadelphia">,
<Person SSN# = "321-45-6789" Name = "Diego Jablonski" City = "Chicago">

}
It is more common and concise to show a relation value as a table. All ordering within
the table is artificial and meaningless.

Design theory for Relational Database
A common problem with schema design involve trying to combine too much into one
relation thus leading to redundancy. Thus, improvements to relational schemas pay
close attention to eliminating redundancy. The theory of “dependences” is a well-
developed theory for relational databases providing guidelines on how to develop
good schema and eliminate flaws if any. The first concept we need to consider is
Functional Dependency (FD).

Functional Dependency (FD)
FUNCTIONAL DEPENDENCY: the term functional dependence can be defined most
easily this way:
Definition:

Let A and B be subsets of the attribute of a relation R. Then the functional
dependency (FD)		

A → B	
holds in R if and only if, whenever two tuples of R have the same value for A,
they also have the same value for B. A and B are the determinant and the
dependent, respectively, and the FD overall can be read as “A functionally
determines B” or “B is functionally dependent on A,” or more simply just as

A → B	

If A and B are composite, then we have

A1, A2, …, An → B1, B2, …, Bm

 This is also equivalent to
 A1, A2, …, An → B1, A1, A2, …, An → B2, ..., A1, A2, …, An → Bm

 The attribute(s) B is functionally dependent on attributes(s)A, if A determines B.

e.g. STU_PHONE is functionally dependent on STU_NUM.

STU_NUM is not functionally dependent on STU_PHONE because the STU_PHONE
value 2267 is associated with two STU_NUM values: 324274 and 324291. (This could
happen when roommates share a single land line phone number.)

The functional dependence definition can be generalized to cover the case in which
the determining attribute values occur more than once in a table.

Functional dependence can then be defined this way:

Attribute B is functionally dependent on A if all of the rows in the table that
agree in value for attribute A also agree in value for attribute B.

RELATION KEYS: The key’s role is based on a concept known as determination. I.e.
the statement “A determines B” indicates that if you know the value of attribute A,
you can look up (determine) the value of attribute B. E.g.:

an invoice number identifies all of the invoice attributes such as invoice date and
the customer name.
if we know STU_NUM in a STUDENT table we can look up (determine) student’s last
name, grade point average, phone number, etc.

Table name: Student

The shorthand notation for “A determines B” is

A → B.

If A determines B, C, and D, we write

A → B, C, D.

For the student example we can write:

STU_NUM → STU_LNAME, STU_FNAME, STU_INIT, STU_DOB, STU_TRANSFER

In contrast, STU_NUM is not determined by STU_LNAME because it is quite possible
for several students to have the last name Smith.
Proper understanding of the principle of determination is vital to the understanding
of a central relational database concept known as functional dependence (FD).

Definitions
Key Attribute(s): We say a set of one or more attributes {A1, A2, ..., An} is a key for
a relation R if:

i. Those attributes functionally determine all other attributes of the relation.
That is, it is impossible for two distinct tuples of R to agree on all of A1, A2,
..., An (uniqueness).

ii. No proper subset of {A1, A2, ..., An} functionally determines all other
attributes of R; i.e., a key must be minimal.

When a key consists of a single attribute A, we often say that A (rather than {A}) is
a key. An attribute that is part of a key is called key attribute.
Consider the Relation Movies below:

Attributes {title, year, starName} form a key for the relation Movies because it meets
the two conditions:
Condition 1:

Do they functionally determine all the other attributes? Yes
Condition 2:

Do any proper subset of {title, year, starName} functionally determines all
other attributes?

{title, year} do not determine starName thus {title, year} is not a key.
{year, starName} is not a key because we could have a star in two movies
in the same year; therefore		

{Year, starName} → title is not an FD.

{title, starName} is not a key, because two movies with the same title, made
in different years, can have a star in common.
Therefore, no proper subset of {title, year, starName} functionally
determines all other attributes

Super Key (shortened: super set of keys): An attribute or a combination of attributes
that is used to identify the records uniquely is known as Super Key. It is to be noted
that some superkeys are not (minimal) keys. Note that every superkey satisfies the
first condition of a key: it functionally determines all other attributes of the
relation. However, a superkey need not satisfy the second condition: minimality. A
table can have many Super Keys. E.g. of Super Key

§ ID
§ ID, Name
§ ID, Address
§ ID, Department_ID
§ ID, Salary
§ Name, Address

Candidate Key: It can be defined as minimal Super Key or irreducible Super Key. In
other words an attribute or a combination of attribute that identifies the record
uniquely but none of its proper subsets can identify the records uniquely. E.g. of
Candidate Key

Code
Name, Address

Primary Key: A Candidate Key that is used by the database designer for unique
identification of each row in a table is known as Primary Key. A Primary Key can
consist of one or more attributes of a table. E.g. of Primary Key - Database designer
can use one of the Candidate Key as a Primary Key.

In this case we have “Code” and “Name, Address” as Candidate Key,
The designer may prefer “Code” as the Primary Key as the other key is the
combination of more than one attribute.

Null values should never be part of a primary key, they should also be avoided to
the greatest extent possible in other attributes too. A null is no value at all. It does
not mean a zero or a space. There are rare cases in which nulls cannot be reasonably
avoided when you are working with non-key attributes. For example, one of an
EMPLOYEE table’s attributes is likely to be the EMP_INITIAL. However, some
employees do not have a middle initial. Therefore, some of the EMP_INITIAL values
may be null. Null can also exist because of the nature of the relationship between
two entities. Conventionally, the existence of nulls in a table is often an indication
of poor database design. Nulls, if used improperly, can create problems because they
have many different meanings. For example, a null can
represent:

An unknown attribute value.
A known, but missing, attribute value.
A “not applicable” condition.

Foreign Key: A foreign key is an attribute or combination of attributes in one base
table that points to the candidate key (generally it is the primary key) of another
table. The purpose of the foreign key is to ensure referential integrity of the data
i.e. only values that are supposed to appear in the database are permitted. E.g.

Consider two table
Employee (EmployeeID, EmployeeName, DOB, DOJ, SSN, DeptID, MgrID) and
DeptTbl (Dept_ID, Dept_Name, Manager_ID, Location_ID)

Dept_ID is the primary key in Table DeptTbl, the DeptID attribute of table
Employee (dependent or child table) can be defined as the Foreign Key as it can
reference to the Dept_ID attribute of the table DeptTbl (the referenced or
parent table), a Foreign Key value must match an existing value in the parent
table or be NULL.

Composite Key: If we use multiple attributes to create a Primary Key then that
Primary Key is called Composite Key (also called a Compound Key or Concatenated
Key).

Full functional dependency (FFD): If the attribute (B) is functionally dependent
on a composite key (A) but not on any subset of that composite key, the attribute (B)
is fully functionally dependent on (A).

Alternate Key: Alternate Key can be any of the Candidate Keys except for the
Primary Key.

Secondary Key: The attributes that are not even the Super Key but can be still used
for identification of records (not unique) are known as Secondary Key.
E.g. of Secondary Key can be Name, Address, Salary, Department_ID etc. as they can
identify the records but they might not be unique.

An Example of relational db with primary key and foreign key

Exercise
Suppose R is a relation with attributes A1, A2, ..., An. As a function of n, tell how
many superkeys R has, if:
a) The only key is A1.
b) The only keys are A1 and A2
c) The only keys are {A1, A2} and {A3, A4}
d) The only keys are {A1, A2} and {A1, A3}

Rules About Functional Dependencies

These rules guide us on how we can infer a functional dependency from other given
FD’s.
E.g., given that a relation R (A, B, C) satisfies the FD’s
A —> B and B —> C,
then we can deduce that R also satisfies the FD
A —> C.

Proof:
Consider two tuples of R that agree on A

Let the tuples agreeing on attribute A be (a, b1, c1) and (a, b2, c2)
Since R satisfies A → B, and these tuples agree on A, they must also agree on B. That
is, b1 = b2

The tuples are now (a, b, c1) and (a, b, c2), where b is both b1 and b2.
Similarly, since R satisfies B → C, and the tuples agree on B, they agree also on C.
Thus, c1= c2; i.e., the tuples do agree on C.

We have proved that any two tuples of R that agree on A also agree on C, and that is
the FD
A → C.
This rule is called the transitive rule

The Splitting/Combining Rule
Recall that the FD:
A1, A2, …, An → B1, B2, …, Bm
is equivalent to the set of FD’s:
A1, A2, …, An → B1, A1, A2, …, An → B2, ..., A1, A2, …, An → Bm

In other words, we may split attributes on the right side so that only one attribute
appears on the right of each FD. Likewise, we can replace a collection of FD’s having
a common left side by a single FD with the same left side and all the right sides
combined into one set of attributes. In either event, the new set of FD’s is equivalent
to the old. The equivalence noted above can be used in two ways.

§ We can replace an FD
A1, A2, …, An → B1, B2, …, Bm by a set of FD’s
A1, A2, …, An → Bi for i = 1, 2, ..., m
We call this transformation the splitting rule.

§ We can replace a set of FD’s
A1, A2, …, An → Bi for i = 1, 2, ..., m by the single FD
A1, A2, …, An → B1, B2, …, Bm.
We call this transformation the combining rule.

E.g. the set of FD’s:

title year → length
title year → genre
title year → studioName

is equivalent to the single FD:
title year → length, genre, studioName

The splitting/ combining rule is stated as follows:
Suppose we have two tuples that agree in A1, A2, ..., An. As a single FD, we would
assert “then the tuples must agree in all of B1, B2, ..., Bm.” As individual FD’s, we
assert “then the tuples agree in B1, and they agree in B2, and, ..., and they agree in
Bm.”

Trivial-dependency rule.

Trivial Functional Dependencies: If a functional dependency (FD) α → β holds in
Relation R, then the term trivial is attached to the dependency if it is satisfied by
all possible r(R)
i.e. α → β is trivial if β ⊆ α or β ∪ α = R
where β is a subset of α, then it is called a trivial FD.
e.g.
title, year → title
title → title
are both trivial FD

There is an intermediate situation in which some, but not all, of the attributes on
the right side of an FD are also on the left. This FD is not trivial.

Non-trivial: If an FD X → Y holds, where Y is not a subset of X, then it is called a
non-trivial FD.

This can be simplified by removing from the right side of an FD those attributes that
appear on the left. That is: The FD
A1, A2, …, An → B1, B2, …, Bm is equivalent to
A1, A2, …, An → C1, C2, …, Ck
where the C’s are all those B’s that are not also A’s.

Completely non-trivial: If an FD X → Y holds, where x intersect Y = Φ, it is said to be
a completely non-trivial FD.

Trivial dependency rule

Computing the Closure of Attributes

Given a set a = {A1, A2, ..., A n} of attributes of R and a set of functional dependencies
FD, we need a way to find all of the attributes of R that are functionally determined
by a. This set of attributes is called the closure of a under F and is denoted a+.
Finding a+ is useful because:

§ if a+ = R, then a is a superkey for R
§ With closure we can find all FD’s easily

- To check if X → A
- Compute X+
- Check if A ∈ X

§ if we find a+ for all a	Í R, we've computed F+ (except that we'd need to use
decomposition to get all of it).

Formal definition of closure:
Suppose a	=	{A1, A2, ..., An} is a set of attributes and S is a set of FD’s. The closure of
a under the FD’s in S is the set of attributes B such that every relation that satisfies
all the FD’s in set S also satisfies A1, A2, …, An → B. That is, A1, A2, …, An → B
follows from the FD’s of S.

We denote the closure of a set of attributes A1, A2, …, An by
{A1, A2, ..., An}+.
Note that A1, A2, ..., An are always in {A1, A2, …, An}+ because the FD A1, A2, …, An →
Ai is trivial when i is one of 1,2,... , n.

The figure above illustrates the closure process:
Starting with the given set of attributes, we repeatedly expand the set by adding the
right sides of FD’s as soon as we have included their left sides. Eventually, we
cannot expand the set any further, and the resulting set is the closure.
An algorithm for computing a+:

 result := a
 repeat
 temp := result
 for each functional dependency b ® g in F do

 if b Í result then
 result := result È g
 until temp = result

Example:
Consider a relation with attributes A, B, C, D, E, and F. Suppose that this relation
has the FD’s
AB → C, BC → AD, D → E, and CF → B.
What is the closure of {A, B}?

Solution
First, split BC → AD into BC → A and BC → D.

Result = {A, B}.
For AB → C

AB Í		Result, so we have
Result = Result È C i.e. Result = {A, B, C}.

For BC → C and BC → D
BC Í	Result, so we have
Result = Result È A and D i.e., Result = {A, B, C, D}

For D → E

D Í	Result, so we have
Result = Result È E i.e. Result = {A, B, C, D, E}

No more changes to Result are possible, thus, {A, B}+ = {A, B, C, D, E}.

By computing the closure of any set of attributes, we can test whether any given FD
A1, A2, …, An → B follows from a set of FD’s S.
First compute {A1, A2, …, An}+ using the set of FD’s S. If B is in {A1, A2, …, An}+, then
A1, A2, …, An → B does follow from S, and if B is not in {A1, A2, …, An}+, then this FD
does not follow from S.

More generally, A1, A2, …, An → B1, B2, …, Bm follows from set of FD’s S if and only
if all of B1, B2, ..., Bm are in {A1, A2, …, An}+

Example:
Consider the relation and FD’s in the example above, Suppose we wish to test whether
AB → D follows from these FD’s. We compute {A, B}+, which is {A, B, C, D, E}. Since D
is a member of the closure, we conclude that AB → D does follow.
On the other hand, consider the FD
D → A. To test whether this FD follows from the given FD’s, first compute {D}+.
{D}+ = {D, E}. Since A is not a member of {D, E}, we conclude that D → A does not follow.

Armstrong's Axioms

If F is a set of functional dependencies then the closure of F, denoted as F+, is the
set of all functional dependencies logically implied by F. Armstrong's Axioms are a
set of rules, that when applied repeatedly, generates a closure of functional
dependencies.

§ Reflexivity / reflexive rule: If {B1, B2, ..., Bm} Í	 {A1, A2, ..., An}, then
A1, A2, …, An → B1, B2, …, Bm. These are what we have called trivial FD’s.

§ Augmentation rule: If A1A2 … An → B1B2 … Bm, then
A1A2 … AnC1C2 … Ck → B1B2, … BmC1C2 … Ck for any set of attributes C1,
C2, ..., Ck
Since some of the C ’s may also be A’s or B’s or both, we should eliminate from
the left side duplicate attributes and do the same for the right side.

§ Transitivity rule: If A1, A2, …, An → B1, B2, …, Bm and B1, B2, …, Bm → C1, C2,
…, Ck hold in relation R, then A1, A2, …, An → C1, C2, …, Ck also holds in R.

If some of the C ’s are among the A’s, we may eliminate them from the right side
by the trivial-dependencies rule

To test whether A1, A2, …, An → C1, C2, …, Ck holds,
we need to compute the closure
{A1, A2, ..., An}+ with respect to the two given FD’s.
The FD A1, A2, …, An → B1, B2, …, Bm tells us that all of B1, B2, ..., B m are in
{A1, A2, ..., A n}+.
Then, we can use the FD B1, B2, …, Bm → C1, C2, …, Ck to add C1, C2, ..., Ck to
{A1, A2, ..., An}+.
Since all the C’s are in {A1, A2, ..., An}+ we conclude that
A1, A2, …, An → C1, C2, …, Ck holds for any relation that satisfies both
A1, A2, …, An → B1, B2, …, Bm and B1, B2, …, Bm → C1, C2, …, Ck.

Additional rules:

§ Union: If X → Y and X → Z, then X → Y Z
§ Pseudotransitivity: If X → Y and W Y → Z, then W X → Z
§ Composition: If X → Y and Z → W, then XZ → Y W

Transitive dependence: an attribute Y is said to be transitively dependent on
attribute X if Y is functionally dependent on another attribute Z which is
functionally dependent on X.

Closure of FD’s set
Given Relation R and a set of FD’s F that holds in R:
The closure of F in R (denoted F+) is the set of all FD’s F in R that are logically
implied by F i.e. s the set of all regular FDs that can be derived from F

algorithm (F)
 /* F is a set of FDs */
F+ = ∅
for each possible attribute set X

Compute the closure X+ of X on F
for each attribute A ∈ X+

add to F+ the FD: X → A
return F+

Example:
Assume there are 4 attributes A, B, C, D and that F = {A → B, B → C}. to compute F+ we
first get:
A+ = AB+ = AC+ = ABC+ = {A, B, C}
B+ = BC+ = {B, C}
C+ = {C}
D+ = {D}
AD+ = {A, D}
BC+ = {B, C}
BD+ = BCD+ = {B, C, D}
ABD+ = ABCD+ = {A, B, C, D}
ACD+ = {A, C, D}

Exercise
Consider a relation with schema R (A, B, C, D) and FD’s AB → C, D → D and D → A.

i. What are all the nontrivial FD’s that follow from the given FD’s? You should
restrict yourself to FD’s with single attributes on the right side.

ii. What are all the keys of R?
iii. What are all the superkeys for R that are not keys?

Relational Set Operators
The Relational Data Model is designed in such ways that data may be processed with
mathematical
operations.	Data in relational tables are of little use unless they are manipulated
to yield meaningful information. Relational Algebra forms the theoretical basis for
manipulating table content using eight operators; four relational operators and
four set operators. Relational operators take one or two relations as inputs and
return relations as the result while set operators take one or two sets as inputs
and return sets as the result.

	Four relational operations

Ø Project
Ø Select
Ø Join
Ø Division

Four set operations
Ø Union
Ø Difference
Ø Intersection
Ø Cartesian Product

Very few DBMSs are capable of supporting all eight relational operators. To be
considered minimally relational, the DBMS must support the key relational
operators SELECT, PROJECT, and JOIN.

1. SELECT, also known as RESTRICT, yields values for all the rows found in a
table that satisfy a given condition. SELECT yields a horizontal subset of a
table.

2. PROJECT yields all values for selected attributes. PROJECT yields a vertical

subset of a table

3. UNION: combines all rows from two or more tables, excluding duplicate rows.
In order to be used in a UNION, the tables must be UNION compatible, that is:

Ø The relations must all have the same number of attributes.
Ø Corresponding columns must all have identical data types and lengths.

When these criteria are met, the tables are said to be union compatible.

4. INTERSECT: yields only the rows that appear in both tables. As with UNION,
the tables must be union-compatible to yield valid results.

5. DIFFERENCE: yields all rows in one table that are not found in the other table.
As with the UNION, the tables must be UNION-compatible to yield valid results.

6. PRODUCT: yields all possible pairs of rows from two tables- also known as
Cartesian product. Therefore, if one table has six rows and the other table
has three, the PRODUCT yields a list composed of 6 x 3= 18 rows.

7. JOIN: Joins two tables together using a shared key usually either the primary
key or foreign key. JOIN allows the use of independent tables linked by common
attributes. Join is a fundamental concept in Relational database. A join can
either be inner join or outer join. An inner join is a join that only returns
matched records from the tables that are being joined e.g. natural Join,
equijoin, theta join. In an outer join, the matched pairs would be retained, and
any unmatched values in the other table would be left null. We look at types
of join below:

§ Natural join (Inner Join): A natural join links tables by selecting only
the rows with common values in their common attribute(s). A natural join
is the result of a three-stage process:
a. PRODUCT of the tables is created
b. SELECT is performed on the output of Step a) to yield only the rows

whose values are equal.
c. A PROJECT is performed on the results of Step b to yield a single copy

of each attribute, thereby eliminating duplicate columns. The final
outcome of a natural join yields a table that does not include
unmatched pairs and provides only copies of the matches.

The two tables to be used for JOIN. In the following example,

SELECT*
FROM Customer
NATURAL JOIN Agent

 Note a few crucial features of the natural join operation:

Ø If no match is made between the table rows, the new table does not
include the unmatched row. In that case, neither AGENT_CODE 421 nor
the customer whose last name is Smithson is included. Smithson’s
AGENT_CODE 421 does not match any entry in the AGENT table.

Ø The column on which the join was made—that is, AGENT_CODE—occurs
only once in the new table.

Ø If the same AGENT_CODE were to occur several times in the AGENT table,
a customer would be listed for each match. For example, if the
AGENT_CODE 167 were to occur three times in the AGENT table, the
customer named Rakowski, who is associated with AGENT_CODE 167,
would occur three times in the	resulting table. (A good AGENT table
cannot, of course, yield such a result because it would contain unique
primary key values.)

Step 1: Cartesian product of the 2 tables

Step 2: SELECT yield only the rows for which the AGENT_CODE values are
equal. The common columns are referred to as the join columns

Step 3: PROJECT eliminates duplicate columns to yield only AGENT_CODE

§ Equijoin, links tables on the basis of an equality condition that compares
specified columns of each table. The outcome of the equijoin does not
eliminate duplicate columns, and the condition or criterion used to join
the tables must be explicitly defined. The equijoin takes its name from
the equality comparison operator (=) used in the condition. E.g.

SELECT*
FROM Customer
JOIN Agent on (AGENT_CODE = CUSTOMER.AGENT_CODE)

§ Theta join: If any other comparison operator such as (<, >, …) is used, the

join is called a theta join.

SELECT*
FROM Customer
JOIN Agent on (AGENT_CODE > CUSTOMER.AGENT_CODE)

§ Outer Join: In an outer join, the matched pairs would be retained, and any

unmatched values in the other table would be left null. It is an easy
mistake to think that an outer join is the opposite of an inner join.
However, it is more accurate to think of an outer join as an “inner join
plus.” The outer join still returns all of the matched records that the
inner join returns, plus it returns the unmatched records from one of
the tables. The SQL OUTER JOIN operator (+) is used only on one side of
the join condition only. The subtypes of OUTER JOIN are:

Ø Left outer join or left join
Ø Right outer join or right join
Ø Full outer join

Syntax
Select *
FROM table1, table2
WHERE conditions [+];

§ The LEFT JOIN (specified with the keywords LEFT JOIN and ON) joins two

tables and fetches all matching rows of two tables for which the sql-
expression is true, plus rows from the first table that do not match any
row in the second table.

Left Join: Syntax

SELECT *
FROM table1
LEFT [OUTER] JOIN table2
ON table1.column_name=table2.column_name;

Pictorial representation of Left join

E.g.

SELECT *
FROM CUSTOMER
LEFT OUTER JOIN AGENT
ON CUSTOMER.AGENT_CODE = AGENT_CODE

Left outer join or Left Join

§ The RIGHT JOIN, joins two tables and fetches rows based on a condition,
which are matching in both the tables (before and after the JOIN clause

mentioned in the syntax below), and the unmatched rows will also be
available from the table written after the JOIN clause (mentioned in the
syntax below).

Syntax

SELECT *
FROM table1
RIGHT [OUTER] JOIN table2
ON table1.column_name=table2.column_name;

Pictorial representation of Right Join

E.g.

SELECT *
FROM CUSTOMER
RIGHT OUTER JOIN AGENT
ON CUSTOMER.AGENT_CODE = AGENT_CODE

Right Join

§ Full outer join: the FULL OUTER JOIN combines the results of both left
and right outer joins and returns all (matched or unmatched) rows from
the tables on both sides of the join clause.

Syntax

SELECT *
FROM table1
FULL OUTER JOIN table2
ON table1.column_name=table2.column_name;

§ ON table1.column_name=table2.column_name;More specifically, if an
outer join is produced for tables CUSTOMER and AGENT, two scenarios
are possible

8. The DIVIDE operation uses one single-column table (e.g., column “a”) as the
divisor and one 2-column table (i.e., columns “a” and “b”) as the dividend. The
tables must have a common column (e.g., column “a”). The output of the DIVIDE
operation is a single column with the values of column “a” from the dividend
table rows where the value of the common column (i.e., column “a”) in both
tables matches.

Divide operation

Relationships within the Relational Database
Relationships are classified as: one-to-one (1:1), one-to-many (1:M), and many-to-many
(M:N or M:M). In developing a good database designs, we must focus on the following
points:

Ø The 1:M relationship is the relational modeling ideal. Therefore, this
relationship type should be the norm in any relational database design.

Ø The 1:1 relationship should be rare in any relational database design.
Ø M:N relationships cannot be implemented as such in the relational model. We

will later consider how any M:N relationship can be changed into two 1:M
relationships.

The 1:M Relationship

The 1:M relationship between PAINTER and PAINTING

The implemented 1:M relationship between PAINTER and PAINTING

The one-to-many (1:M) relationship is easily implemented in the relational model by
putting the primary key of the 1 side in the table of the many side as a foreign key.

The 1:M relationship between COURSE and CLASS

The implemented 1:M relationship between COURSE and CLASS

The 1:1 relationship: As the 1:1 label implies, in this relationship, one entity can be
related to only one other entity, and vice versa. For example, one department chair—

a professor—can chair only one department, and one department can have only one
department chair.

The entities PROFESSOR and DEPARTMENT thus exhibit a 1:1 relationship.

The 1:M relationship between PROFRSSOR and DEPARTMENT

If we the examine the PROFESSOR and DEPARTMENT tables, we note some important
features:
§ Each professor is a College employee; thus, the professor identification is

through the EMP_NUM. (However, note that not all employees are professors—
there’s another optional relationship.)

§ The 1:1 PROFESSOR chairs DEPARTMENT relationship is implemented by having
the EMP_NUM as foreign key in the DEPARTMENT table. Note that the 1:1
relationship is treated as a special case of the 1:M relationship in which the
“many” side is restricted to a single occurrence. In this case, DEPARTMENT
contains the EMP_NUM as a foreign key to indicate that it is the department that
has a chair.

§ Also, note that the PROFESSOR table contains the DEPT_CODE foreign key to
implement the 1:M DEPARTMENT employs PROFESSOR relationship. This is a good
example of how two entities can participate in two (or even more) relationships
simultaneously. The preceding “PROFESSOR chairs DEPARTMENT” example
illustrates a proper 1:1 relationship. In fact, the use of a 1:1 relationship
ensures that two entity sets are not placed in the same table when they should
not be. However, the existence of a 1:1 relationship sometimes means that the
entity components were not defined properly. It could indicate that the two
entities actually belong in the same table! As rare as 1:1 relationships should
be, certain conditions absolutely require their use. One such condition is the
concept called generalization hierarchy, which is a powerful tool for improving
database designs under specific conditions to avoid a proliferation of nulls. One
of the characteristics of generalization hierarchies is that they are implemented
as 1:1 relationships.

Table name: PROFESSOR
Primary key: EMP_NUM
Foreign key: DEPT_CODE

The M:N Relationship: A many-to-many (M:N) relationship is not supported directly
in the relational environment. However, M:N relationships can be implemented by
creating a new entity in 1:M relationships with the original entities.

To explore the many-to-many (M:N) relationship, consider a rather typical college
environment in which each STUDENT can take many CLASSes, and each CLASS can
contain many STUDENTs. The ER model for this M:N relationship is below:
The ERM’s M:N relationship between STUDENT and CLASS

Note the features of the ERM above:

§ Each CLASS can have many STUDENTs, and each STUDENT can take many
CLASSes.

§ There can be many rows in the CLASS table for any given row in the STUDENT
table, and there can be many rows in the STUDENT table for any given row in
the CLASS table.

To examine the M:N relationship more closely, imagine a small college with two
students, each of whom takes three classes. The table below shows the enrollment
data for the two students.

Sample Student Enrollment Data

Table name: STUDENT
Primary key: STU_NUM
Foreign key: none

Given the data relationship and the sample data in the table above, it can be wrongly
assumed that M:N relationship can be implemented by simply adding a foreign key in
the many side of the relationship that points to the primary key of the related table.
This not correct

§ The tables will create many redundancies. For example, note that the STU_NUM
values occur many times in the STUDENT table. In a real-world situation,
additional student attributes such as address, classification, major, and home
phone would also be contained in the STUDENT table, and each of those
attribute values would be repeated in each of the records shown here.
Similarly, the CLASS table contains many duplications: each student taking the
class generates a CLASS record. The problem would be even worse if the CLASS
table included such attributes as credit hours and course description.

§ Given the structure and contents of the two tables, the relational operations
become very complex and are likely to lead to system efficiency errors and
output errors.

The problems inherent in the many-to-many (M:N) relationship can easily be avoided
by creating a
composite entity (also referred to as a bridge entity or an associative entity).
Because such a table is used to link the tables that were originally related in an
M:N relationship, the composite entity structure includes—as foreign keys—at least
the primary keys of the tables that are to be linked. The database designer can then
define the composite table’s primary key either by: using the combination of those
foreign keys or create a new primary key. In the example above, we can create the
composite ENROLL table CLASS and STUDENT. In this example, the ENROLL table’s
primary key is the combination of its foreign keys CLASS_CODE and STU_NUM. But
the designer could have decided to create a single-attribute new primary key such as
ENROLL_LINE, using a different line value to identify each ENROLL table row
uniquely. (Microsoft Access users might use the Autonumber data type to generate
such line values automatically).

Table name: STUDENT
Primary key: STU_NUM
Foreign key: none

Because the ENROLL table links two tables, STUDENT and CLASS, it is also called a
linking table.
In other words, a linking table is the implementation of a composite entity.

The ENROLL table yields the required M:N to 1:M conversion. Observe that the
composite entity represented by the ENROLL table must contain at least the primary
keys of the CLASS and STUDENT tables (CLASS_CODE and STU_NUM, respectively)
for which it serves as a connector. Also note that the STUDENT and CLASS tables
now contain only one row per entity. The ENROLL table contains multiple
occurrences of the foreign key values, but those controlled redundancies are
incapable of producing anomalies as long as referential integrity is enforced.
Additional attributes may be assigned as needed. In this case, ENROLL_GRADE is
selected to satisfy a reporting requirement. Also note that the ENROLL table’s
primary key consists of the two attributes CLASS_CODE and STU_NUM because both
the class code and the student number are needed to define a particular student’s
grade. Naturally, the conversion is reflected in the ERM, too. The revised
relationship is shown below:

Changing the M:N relationship to two 1:M relationships

note that the composite entity named ENROLL represents the linking table between
STUDENT and CLASS. We can increase the amount of available information even as

we control the database’s redundancies. Below is the expanded ERM, including the
1:M relationship between COURSE and CLASS. Note that the model is able to handle
multiple sections of a CLASS while controlling redundancies by making sure that
all of the COURSE data common to each CLASS are kept in the COURSE table.

expanded entity relationship model

The relationship diagram that corresponds to the ERM shown above is as below:

CODD’S RELATIONAL DATABASE RULES
In 1985, Dr. E. F. Codd published a list of 12 rules to define a relational database
system. The reason Dr. Codd published the list was his concern that many vendors
were marketing products as “relational” even though those products did not meet
minimum relational standards. Dr. Codd’s list, serves as a frame of reference for
what a truly relational database should be. Note that even the dominant database
vendors do not fully support all 12 rules.

Dr. Codd’s 12 Relational Database Rules

THE ENTITY RELATIONSHIP MODEL (ERM)
Peter Chen first introduced the ER data model in 1976; it was the graphical
representation of entities and their relationships in a database structure that
quickly became popular because it complemented the relational data model concepts.
The relational data model and ERM combined to provide the foundation for tightly
structured database design. ER models are normally represented in an entity
relationship diagram (ERD), which uses graphical representations to model database
components. The ERD represents the conceptual database as viewed by the end user.
ERDs depict the database’s main components: entities, attributes, and relationships.
Because an entity represents a real-world object, the words entity and object are
often used interchangeably. The notations used with ERDs are the original Chen
notation and the newer Crow’s Foot and UML notations. Some conceptual database
modeling concepts can be expressed only using the Chen notation. Because of its
implementation emphasis, the Crow’s Foot notation can represent only what could be
implemented. In summary:

§ The Chen notation favors conceptual modeling.
§ The Crow’s Foot notation favors a more implementation-oriented approach.
§ The UML notation can be used for both conceptual and implementation

modeling.

The ER model is based on the following components:

§ Entity: An entity is anything about which data are to be collected and stored.
An entity is represented in the ERD by a rectangle, also known as an entity box.
The name of the entity, a noun, is written in the center of the rectangle. The
entity name is generally written in capital letters and is written in the
singular form: PAINTER rather than PAINTERS, and EMPLOYEE rather than
EMPLOYEES. Usually, when applying the ERD to the relational model, an entity
is mapped to a relational table. Each row in the relational table is known as
an entity instance or entity occurrence in the ER model. Each entity is
described by a set of attributes that describes particular characteristics of
the entity. For example, the entity EMPLOYEE will have attributes such as a
Social Security number, a last name, and a first name. A collection of like
entities is known as an entity set. The word entity in the ERM corresponds to a
table—not to a row—in the relational environment. The ERM refers to a table
row as an entity instance or entity occurrence.

§ Attributes: Attributes are characteristics of entities. For example, the
STUDENT entity includes, among many others, the attributes STU_LNAME,
STU_FNAME, and STU_INITIAL. In the original Chen notation, attributes are
represented by ovals and are connected to the entity rectangle with a line.
Each oval contains the name of the attribute it represents. In the Crow’s Foot
notation, the attributes are written in the attribute box below the entity
rectangle. Because the Chen representation is rather space-consuming,
software vendors have adopted the Crow’s Foot attribute display.

Attributes of the STUDENT entity: Chen and crow’s foot

Required and Optional Attributes: A required attribute is an attribute that
must have a value; in other words, it cannot be left empty. As shown above
there are two boldfaced attributes in the Crow’s Foot notation. This indicates
that a data entry will be required. In this example, STU_LNAME and STU_FNAME
require data entries because of the assumption that all students have a last
name and a first name. But students might not have a middle name, and perhaps
they do not (yet) have a phone number and an e-mail address. Therefore, those
attributes are not presented in boldface in the entity box. An optional
attribute is an attribute that does not require a value; therefore, it can be
left empty.
Attribute domains: Attributes have a domain. A domain is the set of possible
values for a given attribute. For example, the domain for the grade point
average (GPA) attribute is written (0,4) because the lowest possible GPA value
is 0 and the highest possible value is 4. The domain for the gender attribute
consists of only two possibilities: M or F (or some other equivalent code). The
domain for a company’s date of hire attribute consists of all dates that fit in
a range (for example, company startup date to current date). Attributes may
share a domain. For instance, a student address and a professor address share
the same domain of all possible addresses. In fact, the data dictionary may let
a newly declared attribute inherit the characteristics of an existing attribute
if the same attribute name is used. For example, the PROFESSOR and STUDENT
entities may each have an attribute named ADDRESS and could therefore share
a domain.
Identifiers (Primary Keys): The ERM uses identifiers, that is, one or more
attributes that uniquely identify each entity instance. In the relational model,

such identifiers are mapped to primary keys (PKs) in tables. Identifiers are
underlined in the ERD. Key attributes
are also underlined in a frequently used table structure shorthand notation
using the format:
TABLE NAME (KEY_ATTRIBUTE 1, ATTRIBUTE 2, ATTRIBUTE 3, . . . ATTRIBUTE K)

For example, a CAR entity may be represented by:

CAR (CAR_VIN, MOD_CODE, CAR_YEAR, CAR_COLOR)
(Each car is identified by a unique vehicle identification number, or CAR_VIN.)
Composite Identifiers: Ideally, an entity identifier is composed of only a single
attribute. However, it is possible to use a composite identifier, that is, a
primary key composed of more than one attribute. E.g. CLASS entity of
CRS_CODE and CLASS_SECTION instead of using CLASS_CODE. Either approach
uniquely identifies each entity instance.

Composite and Simple Attributes: Attributes are classified as simple or
composite. A composite attribute, not to be confused with a composite key, is an
attribute that can be further subdivided to yield additional attributes. For
example, the attribute ADDRESS can be subdivided into street, city, state, and
zip code. Similarly, the attribute PHONE_NUMBER can be subdivided into area
code and exchange number. A simple attribute is an attribute that cannot be
subdivided. For example, age, sex and marital status would be classified as
simple attributes. To facilitate detailed queries, it is wise to change composite
attributes into a series of simple attributes.

Single-Valued Attributes: A single-valued attribute is an attribute that can
have only a single value. For example, a person can have only one Social
Security number, and a manufactured part can have only one serial number.
Keep in mind that a single-valued attribute is not necessarily a simple
attribute. For instance, a part’s serial number, such as SE-08-02-189935, is
single-valued, but it is a composite attribute because it can be subdivided into
the region in which the part was produced (SE), the plant within that region
(08), the shift within the plant (02), and the part number (189935).

Multivalued Attributes: Multivalued attributes are attributes that can have
many values. For instance, a person may have several college degrees, and a
household may have several different phones, each with its own number.
Similarly, a car’s color may be subdivided into many colors (that is, colors for
the roof, body, and trim). In the Chen ERM, the multivalued attributes are
shown by a double line connecting the attribute to the entity. The Crow’s Foot
notation does not identify multivalued attributes.

A multivalued attribute in an entity

The ERD above contains all of the components introduced thus far. Note that
CAR_VIN is the primary key, and CAR_COLOR is a multivalued attribute of the
CAR entity.

Implementing Multivalued Attributes
Although the conceptual model can handle M:N relationships and multivalued
attributes, it poor practice to implement them in the RDBMS. In the relational
table, each column/row intersection represents a single data value. The
designer must decide on one of two possible courses of action to handle
multivalued attributes:

i. Split the multivalued attribute to create several new attributes. For
example, the CAR entity’s attribute CAR_COLOR can be split to create the
new attributes CAR_TOPCOLOR, CAR_BODYCOLOR, and CAR_TRIMCOLOR,
which are then assigned to the CAR entity. Although this solution seems
to work, its adoption can lead to major structural problems in the table.
For example, if additional color components—such as a logo color—are
added for some cars, the table structure must be modified to accommodate
the new color section. In that case, cars that do not have such color
sections generate nulls for the nonexisting components, or their color
entries for those sections are entered as N/A to indicate “not
applicable.” Also consider the employee entity containing employee
degrees and certifications. If some employees have 10 degrees and
certifications while most have fewer or none, the number of
degree/certification attributes would number 10, and most of those
attribute values would be null for most of the employees.) In short,
while solution 1 is practicable, it is not an acceptable solution.

	 	
Splitting the multivalued attribute into new attributes

ii. Create a new entity composed of the original multivalued attribute’s
components. This new entity allows the designer to define color for
different sections of the car. (See Table below).

Components of the Multivalued Attribute

Another benefit we can derive from this approach is that we are now able
to assign as many colors as necessary without having to change the table
structure.

A new entity set composed of a multivalued attribute’s components

Note that the ERM shown in Figure above reflects the components listed
in previous table. This is the preferred way to deal with multivalued
attributes. Creating a new entity in a 1:M relationship with the original
entity yields several benefits: it’s a more flexible, expandable solution,
and it is compatible with the relational model!

Derived Attributes: A derived attribute is an attribute whose value is
calculated (derived) from other attributes. The derived attribute need
not be physically stored within the database; instead, it can be derived
by using an algorithm. For example, an employee’s age, EMP_AGE, may be
found by computing the integer value of the difference between the
current date and the EMP_DOB. In Microsoft Access, we use:

INT((DATE() – EMP_DOB)/365)
In Microsoft SQL Server, we use

SELECT DATEDIFF(“YEAR”, EMP_DOB, GETDATE()),
where DATEDIFF is a function that computes the difference between
dates. The first parameter indicates the measurement, in this case, years.
In Oracle, we use SYSDATE instead of DATE().
A derived attribute is indicated in the Chen notation by a dashed line
connecting the attribute and the entity. The Crow’s Foot notation does
not have a method for distinguishing the derived attribute from other
attributes.

Depiction of a derived attribute

Derived attributes are sometimes referred to as computed attributes. A
derived attribute computation can be as simple as adding two attribute
values located on the same row, or it can be the result of aggregating
the sum of values located on many table rows (from the same table or
from a different table). The decision to store derived attributes in
database tables depends on the processing requirements and the
constraints placed on a particular application. The designer should be
able to balance the design in accordance with such constraints.
Table below shows the advantages and disadvantages of storing (or not
storing) derived attributes in the database.

advantages and disadvantages of storing (or not storing) derived
attributes in the database.

§ Relationships. Relationships describe associations among data. Most
relationships describe associations between two entities. The three types of
relationships among data include:

§ one-to-many (1:M)
§ many-to-many (M:N)
§ and one-to-one (1:1).

The ER model uses the term connectivity to label the relationship types. The
name of the relationship is usually an active or passive verb. For example, a
PAINTER paints many PAINTINGs; an EMPLOYEE learns many SKILLs; an
EMPLOYEE manages a STORE. Illustrated below are the different types of

relationships using two ER notations: the original Chen notation and the more
current Crow’s Foot notation.

The left side of the ER diagram shows the Chen notation, based on Peter Chen’s
landmark paper. In this notation, the connectivities are written next to each
entity box. Relationships are represented by a diamond connected to the
related entities through a relationship line. The relationship name is written
inside the diamond. The right side illustrates the Crow’s Foot notation. The
name “Crow’s Foot” is derived from the three-pronged symbol used to represent
the “many” side of the relationship. In the basic Crow’s Foot ERD represented
above, the connectivities are represented by symbols. For example, the “1” is
represented by a short line segment, and the “M” is represented by the three-
pronged “crow’s foot.” The relationship name is written above the relationship
line. In Figure above, entities and relationships are shown in a horizontal
format, but they may also be oriented vertically. The entity location and the
order in which the entities are presented are immaterial; just remember to read
a 1:M relationship from the “1” side to the “M” side.

Connectivity and Cardinality
As stated above, the term connectivity is used to describe the relationship
classification. Cardinality expresses the minimum and maximum number of
entity occurrences associated with one occurrence of the related entity. In
the ERD, cardinality is indicated by placing the appropriate numbers beside the
entities, using the format (x,y). The first value represents the minimum number
of associated entities, while the second value represents the maximum number
of associated entities. Many database designers who use Crow’s Foot modeling
notation do not depict the specific cardinalities on the ER diagram itself
because the specific limits described by the cardinalities cannot be
implemented directly through the database design. Correspondingly, some
Crow’s Foot ER modeling tools do not print the numeric cardinality range in
the diagram; instead, you can add it as text if you want to have it shown.

Connectivity and Cardinality

Knowing the minimum and maximum number of entity occurrences is very useful
at the application software level. A college might want to ensure that a class
is not taught unless it has at least 10 students enrolled. Similarly, if the
classroom can hold only 30 students, the application software should use that
cardinality to limit enrollment in the class. However, keep in mind that the
DBMS cannot handle the implementation of the cardinalities at the table
level—that capability is provided by the application software or by triggers.

Existence Dependence: An entity is said to be existence-dependent if it can
exist in the database only when it is associated with another related entity
occurrence. In implementation terms, an entity is existence-dependent if it has
a mandatory foreign key—that is, a foreign key attribute that cannot be null.
For example, if an employee wants to claim one or more dependents for tax-
withholding purposes, the relationship “EMPLOYEE claims DEPENDENT” would
be appropriate. In that case, the DEPENDENT entity is clearly existence-
dependent on the EMPLOYEE entity because it is impossible for the dependent
to exist apart from the EMPLOYEE in the database. If an entity can exist apart
from all of its related entities (it is existence-independent), then that entity
is referred to as a strong entity or regular entity.

Relationship Strength: The concept of relationship strength is based on how
the primary key of a related entity is defined. To implement a relationship, the
primary key of one entity appears as a foreign key in the related entity. For
example, the 1:M relationship between VENDOR and PRODUCT is implemented by
using the VEND_CODE primary key in VENDOR as a foreign key in PRODUCT.
There are times when the foreign key also is a primary key component in the
related entity. Relationship strength decisions affect primary key
arrangement in database design.

Weak (Non-identifying) Relationships: A weak relationship, also known
as a non-identifying relationship, exists if the PK of the related entity
does not contain a PK component of the parent entity. By default,
relationships are established by having the PK of the parent entity
appear as an FK on the related entity. For example, suppose that the
COURSE and CLASS entities are defined as:
COURSE(CRS_CODE, DEPT_CODE, CRS_DESCRIPTION, CRS_CREDIT)
CLASS(CLASS_CODE, CRS_CODE, CLASS_SECTION, CLASS_TIME,
ROOM_CODE, PROF_NUM)
In this case, a weak relationship exists between COURSE and CLASS
because the CLASS_CODE is the CLASS entity’s PK, while the CRS_CODE
in CLASS is only an FK. In this example, the CLASS PK did not inherit the
PK component from the COURSE entity.

Table name: COURSE

Crow’s Foot notation depicts a strong relationship

Strong (Identifying) Relationships: A strong relationship, also known
as an identifying relationship, exists when the PK of the related entity
contains a PK component of the parent entity. For example, the
definitions of the COURSE and CLASS entities COURSE(CRS_CODE,
DEPT_CODE, CRS_DESCRIPTION, CRS_CREDIT)
CLASS(CRS_CODE, CLASS_SECTION , CLASS_TIME, ROOM_CODE,
PROF_NUM)
indicate that a strong relationship exists between COURSE and CLASS,
because the CLASS entity’s composite PK is composed of CRS_CODE +
CLASS_SECTION. (Note that the CRS_CODE in CLASS is also the FK to the
COURSE entity.) The Crow’s Foot notation depicts the strong
(identifying) relationship with a solid line between the entities. Whether
the relationship between COURSE and CLASS is strong or weak depends
on how the CLASS entity’s primary key is defined. Keep in mind that the
order in which the tables are created and loaded is very important. For
example, in the “COURSE generates CLASS” relationship, the COURSE
table must be created before the CLASS table. After all, it would not be
acceptable to have the CLASS table’s foreign key reference a COURSE
table that does not yet exist.

Crow’s Foot notation depicts a strong relationship

Weak Entities: a weak entity is one that meets two conditions:

§ The entity is existence-dependent; that is, it cannot exist without
the entity with which it has a relationship.

§ The entity has a primary key that is partially or totally derived
from the parent entity in the relationship.

For example, a company insurance policy insures an employee and his/her
dependents. For the purpose of describing an insurance policy, an

EMPLOYEE might or might not have a DEPENDENT, but the DEPENDENT
must be associated with an EMPLOYEE. Moreover, the DEPENDENT cannot
exist without the EMPLOYEE; that is, a person cannot get insurance
coverage as a dependent unless s(he) happens to be a dependent of an
employee. DEPENDENT is the weak entity in the relationship “EMPLOYEE
has DEPENDENT.”

Note that the Chen notation above identifies the weak entity by using a
double-walled entity rectangle. The Crow’s Foot notation generated by
Visio Professional uses the relationship line and the PK/FK designation
to indicate whether the related entity is weak.
A strong (identifying) relationship indicates that the related entity is
weak. Such a relationship means that both conditions for the weak entity
definition have been met—the related entity is existence-dependent, and
the PK of the related entity contains a PK component of the parent entity.
Remember that the weak entity inherits part of its primary key from its
strong counterpart. For example, at least part of the DEPENDENT
entity’s key shown in Figure above was inherited from the EMPLOYEE
entity:
EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_DOB,
EMP_HIREDATE)
DEPENDENT (EMP_NUM, DEP_NUM, DEP_FNAME, DEP_DOB)

Crowfoot symbols

§ Relationship Degree: A relationship degree indicates the number of entities

or participants associated with a relationship. A unary relationship exists
when an association is maintained within a single entity. A binary relationship
exists when two entities are associated. A ternary relationship exists when
three entities are associated. Although higher degrees exist, they are rare and
are not specifically named. (For example, an association of four entities is
described simply as a four-degree relationship.)

Three types of relationship degree

o Unary Relationships: In the case of the unary relationship shown above,
an employee within the EMPLOYEE entity is the manager for one or more
employees within that entity. In this case, the existence of the “manages”
relationship means that EMPLOYEE requires another EMPLOYEE to be the
manager—that is, EMPLOYEE has a relationship with itself. Such a
relationship is known as a recursive relationship.

o Binary Relationships A binary relationship exists when two entities are
associated in a relationship. Binary relationships are most common. In
fact, to simplify the conceptual design, whenever possible, most higher-
order (ternary and higher) relationships are decomposed into
appropriate equivalent binary relationships.

o Ternary and Higher-Degree Relationships: Although most relationships
are binary, the use of ternary and higher-order relationships does allow
the designer some latitude regarding the semantics of a problem. A
ternary relationship implies an association among three different
entities.

Example

Mr Brandon’s the owner of SPEED CAFÉ has been having problems with the
management of his Café. Having learnt that you are a DB designer, he believes he has
finally found a solution. He has asked you to automate the management of his Café.
Since this will involve a database backend, you are saddled with the task of showing
him a good database model based on the following business rules:

• The café has several employees each having a unique identification number,
names and dates of birth.

• An employee is either a “Technical Officer” or “Casual Employee”, but not
both. A Technical officer has access to one or more computing facilities in

the Café and therefore has login usernames and passwords. Technical
officers have varying salary rates based on their ranks. Casual Employee
however, do not have access to computing facilities and their salaries are
wages (i.e. based on the number of hours worked).

• All Computing facilities in the Café have names (e.g. computer, cable, printer
etc.) and date of purchase (remember names are not unique, so you will have
to choose a surrogate key).

• Access to Internet facilities in the Café (either by a staff or customer) is
through a ticket. Each ticket has a unique ticket number, duration, time of
production, period (number of days) of validity and price in Naira.

Draw an implementation oriented ER diagram for SPEED CAFÉ database indicating
necessary connectivities, cardinalities and participation constraints (relationship
strengths). You can state the necessary assumptions made.

EMPLOYEE	
PK		 emp_id	
							First_name	
							Date_of_birth	

TECHNICIAN	
PK,FK		 emp_id	 	 	
												Login_username	
												Login_password	

d	

RANK	
PK		 rank_id	
								Rank_title	
								Salary_rate	

COMPUTING	FAC.	
PK		 facility_id	
										name	
									Date_of_purchase	

TICKET	
PK		 ticket_number	
											Date_of_production	
											Date_of_expiry	
											Price	
											Duration	

CASUAL	WORKER	
PK,FK		 emp_id	 	 	
												Hours_worked	
													Wage_rate	

has	

Accessed_through	

