INTRODUCTION TO REACTOR DESIGN
LEARNING OBJECTIVES

- At the end of this week’s lecture, students should be able to:
 - Understand the essentials of reactor design.
 - Differentiate between a batch, steady-state flow and unsteady state flow reactors
 - Know the symbols and relationships between C_A and X_A
ESSENTIALS OF REACTOR DESIGN

- The focus of reactor design are
 - Knowing the size of the reactor, and
 - The type of reactor and
 - The best method of operation.

- Factors of importance in reactor design include:
 - The reacting conditions in the reactor
 - The time taken for the reaction to occur
 - The temperature,
 - The composition of the reacting fluid
 - The thermal character of the reaction, either endothermic or exothermic, the rate of heat addition or removal from the system, and
 - The flow pattern of fluid through the vessel.

- All these factors must be accounted for in predicting the performance of a reactor.
To arrive at a well fitted design:

- we must be able to predict the response of the reacting system to changes in operating conditions (i.e. how rates and equilibrium conversion change with temperature and pressure),

- we must be able to compare yields for alternative designs (adiabatic versus isothermal operations, single versus multiple reactor units, flow versus batch system), and

- we must be able to estimate the economics of the various alternatives.
CLASSIFICATION OF REACTOR TYPES

- The batch reactor is
 - is used for small-scale experimental studies on reaction kinetics
 - used industrially when relatively small amounts of material are to be treated.
 - needs little supporting equipment
 - An ideal reactor

- The steady-state flow reactor is
 - used industrially when large quantities of material are to be processed
 - used when the rate of reaction is fairly high to extremely high
 - extremely good product quality control can be obtained
 - supporting equipment needs are great
 - widely used in the oil industry.
CLASSIFICATION OF REACTOR TYPES

- The semi-batch reactor
 - is a flexible system but is more difficult to analyze than the other reactor types
 - It offers good control of reaction speed because the reaction proceeds as reactants are added
 - Such reactors are used in a variety of applications from the calorimetric titrations in the laboratory to the large open hearth furnaces for steel production.
Comparison of Types of Chemical Reactors

<table>
<thead>
<tr>
<th>Type of Reactor</th>
<th>Characteristics</th>
<th>Usage</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch</td>
<td>• Reactor is charged (filled) via two holes in the top of the tank; while reaction is carried out, nothing else is put in or taken out until reaction is done; tank easily cooled or heated by jacket</td>
<td>• Small-scale production • Intermediate or one-shot productions • Pharmaceuticals • Fermentations</td>
<td>• High conversion per unit volume for one pass • Same reactor can be used to produce one product one time and a different product the next</td>
<td>• High operating cost (labor) • Product quality more variable than with continuous operation</td>
</tr>
<tr>
<td>Sembatch</td>
<td>• Either one reactant is charged and the other is fed continuously (at small concentrations) or else one of the products can be removed continuously (to avoid side reactions)</td>
<td>• Small-scale production • Competing reactions</td>
<td>• Good selectivity; feed can be controlled so as to minimize side runs.</td>
<td>• High operating labor cost • Product quality more variable than with continuous operation</td>
</tr>
<tr>
<td>Continuously stirred tank reactor (CSTR)</td>
<td>• Run at steady state with continuous flow of reactants and products; the feed assumes a uniform composition throughout the reactor, exit stream has the same composition as in the tank</td>
<td>• When agitation is required • Series configuration for different concentration streams</td>
<td>• Continuous operation • Good temperature control • Good control • Simplicity of construction • Low operating (labor) cost</td>
<td>• Lowest conversion per unit volume • Bypassing and channeling possible with poor agitation</td>
</tr>
<tr>
<td>Plug flow reactor (PFR)</td>
<td>• Arranged as one long reactor or many short reactors in a tube bank; no radial variation in reaction rate (concentration); concentration charges with length down the reactor</td>
<td>• Large-scale production • Homogeneous reactions • Heterogeneous reactions • Continuous production • High temperature</td>
<td>• Highest conversion per unit volume • Low operating labor cost • Continuous operation • Good heat transfer</td>
<td>• Undesired thermal gradients may exist • Poor temperature control • Shutdown, cleaning may be expensive</td>
</tr>
<tr>
<td>Tubular packed bed reactor (PBR)</td>
<td>• Tubular reactor that is packed with solid catalyst particles</td>
<td>• Used primarily in heterogeneous gas phase reactions with a catalyst</td>
<td>• Highest conversion per unit mass of catalyst • Low operating cost • Continuous operation</td>
<td>• Undesired thermal gradients may exist • Poor temperature control • Channeling may occur</td>
</tr>
</tbody>
</table>
MATERIAL AND ENERGY BALANCES IN A REACTOR

- In any design process, the first thing to do is to carry out material and energy balances over the equipment to be designed.

- For the material balance, consider an element of volume of the reactor,

- The material balance for any reactant (or product) can be expressed as

\[
\begin{align*}
\text{rate of reactant flow into element of volume} &= \text{rate of reactant flow out of element of volume} + \text{rate of reactant loss due to chemical reaction within the element of volume} + \text{rate of accumulation of reactant in element of volume}
\end{align*}
\]
MATERIAL AND ENERGY BALANCES IN A REACTOR

- For constant composition within the reactor (i.e. independent of position),
 - the accounting is made over the whole reactor (synonymous to integral method).

- For variable composition,
 - the accounting must be made over a differential element of volume and then integrated across the whole reactor for the appropriate flow and concentration conditions (i.e. combining both the differential and integral method of analysis).

- For the various reactor types this material balance equation simplifies to the basic *performance equation* for that type of reactor.
 - in the batch reactor the first two terms are zero;
 - in the steady-state flow reactor the fourth term disappears;
 - in the semi-batch reactor all four terms may have to be considered.
ENERGY BALANCE IN A REACTOR

- In non-isothermal operations energy balances must be used in conjunction with material balances.

- Considering the element of volume of the reactor,

 ![Diagram of energy balance](image)

 - The energy balance for any reactant (or product) is expressed as:

 \[
 \left(\frac{\text{rate of heat flow into element of volume}}{\text{volume}} \right) = \left(\frac{\text{rate of heat flow out of element of volume}}{\text{volume}} \right) + \left(\frac{\text{rate of disappearance of heat by reaction within element of volume}}{\text{volume}} \right) + \left(\frac{\text{rate of accumulation of heat within element of volume}}{\text{volume}} \right)
 \]
For a batch reactor,

While for a steady state flow reactor,

\[F_{A0} = \text{moles fed/hr} \]
\[v_0 = \text{m}^3 \text{ fluid entering/hr} \]
\[C_{A0} = \text{concentration of A in the feed stream} \]
For the reaction: \(aA + bB \rightarrow rR \).

The previous figures show that there are two related measures of the extent of reaction, the concentration \(C_A \) and the conversion \(X_A \).

The relationship between \(C_A \) and \(X_A \) depends on a number of factors.

Case 1. Constant Density Batch and Flow Systems. It includes most liquid reactions and gas reactions run at constant temperature and density. Here \(C_A \) and \(X_A \) are related as follows:

\[
X_A = 1 - \frac{C_A}{C_{A0}} \quad \text{and} \quad dX_A = -\frac{dC_A}{C_{A0}} \quad \left\{ \begin{array}{l}
\frac{C_A}{C_{A0}} = 1 - X_A \quad \text{and} \quad dC_A = -C_{A0}dX_A.
\end{array} \right.
\]

where \(\varepsilon_A \) is the fractional volume change on complete conversion of \(A \), and

\[
\frac{C_{A0} - C_A}{a} = \frac{C_{B0} - C_B}{b} = \frac{C_R - C_{R0}}{r} \quad \text{or} \quad \frac{C_{A0}X_A}{a} = \frac{C_{B0}X_B}{b}
\]
Case 2. Batch and Flow Systems of Gases of Changing Density but with \(T \) and \(\pi \) Constant. Here the density changes because of the change in number of moles during reaction. The volume of a fluid element changes linearly with conversion, or \(V = V_0 \left(1 + \epsilon_A X_A \right) \)

\[
X_A = \frac{C_{A0} - C_A}{C_{A0} + \epsilon_A C_A} \quad \text{and} \quad dX_A = -\frac{C_{A0}(1 + \epsilon_A)}{(C_{A0} + \epsilon_A C_A)^2} dC_A
\]

\[
\frac{C_A}{C_{A0}} = \frac{1 - X_A}{1 + \epsilon_A X_A} \quad \text{and} \quad \frac{dC_A}{C_{A0}} = -\frac{1 + \epsilon_A}{(1 + \epsilon_A X_A)^2} dX_A
\]

For \(\epsilon_A = \frac{V_{X_A=1} - V_{X_A=0}}{V_{X_A=0}} \neq 0 \)

To follow changes in the other components we have

between reactants

\[
\begin{align*}
\epsilon_A X_A &= \epsilon_B X_B \\
\frac{a \epsilon_A}{C_{A0}} &= \frac{b \epsilon_B}{C_{B0}}
\end{align*}
\]

for products and inerts

\[
\begin{align*}
\frac{C_R}{C_{A0}} &= \frac{(r/a)X_A + C_{R0}/C_{A0}}{1 + \epsilon_A X_A} \\
\frac{C_I}{C_{I0}} &= \frac{1}{1 + \epsilon_A X_A}
\end{align*}
\]
Case 3. Batch and Flow Systems for Gases in General (varying \(p, T, \pi \)) which react according to

\[
aA + bB \rightarrow rR, \quad a + b \neq r
\]

Selecting a key reactant, \(A \) as the basis for determining the conversion, then for ideal gas behavior,

\[
X_A = \frac{1}{1 + \varepsilon_A} \left(\frac{C_A}{C_{A0}} \right) \left(\frac{T\pi_0}{T_0\pi} \right)
\]

or

\[
\frac{C_A}{C_{A0}} = \frac{1 - X_A}{1 + \varepsilon_A X_A} \left(\frac{T_0\pi}{T\pi_0} \right)
\]

\[
X_A = \frac{C_{B0} - C_B}{b + \varepsilon_A} \left(\frac{C_A}{C_{A0}} \right) \left(\frac{T\pi_0}{T_0\pi} \right)
\]

or

\[
\frac{C_B}{C_{A0}} = \frac{C_{B0} - b X_A}{a + \varepsilon_A X_A} \left(\frac{T_0\pi}{T\pi_0} \right)
\]

\[
\frac{C_R}{C_{A0}} = \frac{C_{R0} + r X_A}{a} \frac{T_0\pi}{T\pi_0}
\]
For high-pressure non-ideal gas behavior replace

\[
\left(\frac{T_0 \pi}{\tau_0 \pi_0} \right) \text{ by } \left(\frac{z_0 T_0 \pi}{z T \pi} \right)
\]

where \(z \) is the compressibility factor.

To change to another key reactant, say B, note that

\[
\frac{a \varepsilon_A}{C_{A0}} = \frac{b \varepsilon_B}{C_{B0}} \quad \text{and} \quad \frac{C_{A0} X_A}{a} = \frac{C_{B0} X_B}{b}
\]

For liquids or isothermal gases with no change in pressure and density

\[
\varepsilon_A \to 0 \quad \text{and} \quad \left(\frac{T_0 \pi}{T \pi_0} \right) \to 1
\]
Example 1:

Consider a feed $C_{A0} = 100$, $C_{B0} = 200$, $C_{i0} = 100$ to a steady-flow reactor. The isothermal gas-phase reaction is

$$A + 3B \rightarrow 6R$$

If $C_A = 40$ at the reactor exit, what is C_B, X_A, and X_B there?

SOLUTION:

- First sketch what is known

- Next recognize that this problem concerns Case 2.

- So evaluate \mathcal{E}_A and \mathcal{E}_B.
Remember

\[\varepsilon_A = \frac{V_{X_A=1} - V_{X_A=0}}{V_{X_A=0}} \text{ and } \varepsilon_B = \frac{\varepsilon_A C_{B0}}{bC_{A0}} \]

Let’s take volumes of entering gas to be 400

at \(X_A = 0 \), \(V = 100A + 200B + 100i = 400 \)

at \(X_A = 1 \), \(V = 0A - 100B + 600R + 100i = 600 \)

So

\[\varepsilon_A = \frac{600 - 400}{400} = \frac{1}{2} \]

And

\[\varepsilon_B = \frac{\varepsilon_A C_{B0}}{bC_{A0}} = \frac{(1/2)(200)}{3(100)} = \frac{1}{3} \]

Therefore, calculating for \(X_A \),

\[X_A = \frac{C_{A0} - C_A}{C_{A0} + \varepsilon_A C_A} = \frac{100 - 40}{100 + (1/2)40} = \frac{60}{120} = 0.5 \]
Calculating for XB,

\[X_B = \frac{bC_{A0}X_A}{C_{B0}} = \frac{3(100)(0.5)}{200} = 0.75 \]

And calculating for CB,

\[C_B = C_{B0} \left(\frac{1 - X_B}{1 + \varepsilon_B X_B} \right) = \frac{200(1 - 0.75)}{1 + (1/3)(0.75)} = 40 \]
THANK YOU FOR YOUR ATTENTION! ANY QUESTIONS?
Case 2. Batch and Flow Systems of Gases of Changing Density but with T and π Constant. Here the density changes because of the change in number of moles during reaction. The volume of a fluid element changes linearly with conversion, or $V = V_0 (1 + \varepsilon_A X_A)$

$$X_A = \frac{C_{A0} - C_A}{C_{A0} + \varepsilon_A C_A} \quad \text{and} \quad dX_A = -\frac{C_{A0}(1 + \varepsilon_A)}{(C_{A0} + \varepsilon_A C_A)^2} dC_A$$

$$\frac{C_A}{C_{A0}} = \frac{1 - X_A}{1 + \varepsilon_A X_A} \quad \text{and} \quad \frac{dC_A}{C_{A0}} = -\frac{1 + \varepsilon_A}{(1 + \varepsilon_A X_A)^2} dX_A$$

for $\varepsilon_A = \frac{V_{X_A=1} - V_{X_A=0}}{V_{X_A=0}} \neq 0$

To follow changes in the other components we have

\[
\begin{align*}
\varepsilon_A X_A &= \varepsilon_B X_B \\
\frac{a \varepsilon_A}{C_{A0}} &= \frac{b \varepsilon_B}{C_{B0}}
\end{align*}
\]

\[
\begin{align*}
\frac{C_R}{C_{A0}} &= \frac{(r/a)X_A + C_{R0}/C_{A0}}{1 + \varepsilon_A X_A} \\
\frac{C_I}{C_{I0}} &= \frac{1}{1 + \varepsilon_A X_A}
\end{align*}
\]