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Learning Objectives for today’s lecture

e At the end of this week’s lecture, you should
be able to:

— develop the Clapeyron equation and determine
the enthalpy of vaporization from P, v, and T
measurements alone.

— Develop general relations for c,, o du, dh, and ds
that are valid for all pure substances.
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Application of Mewell Equations o
EXAMPLE: The molar volume of an organic liquid at 300 K and 1 bar is 0.1
m3/kmol and its coefficient of expansion is 1.25 x10-3 K-1, What would be the

change in entropy if the pressure is increased to 20 bar at 300 K?

Solution The coefficient of volume m]mnncinn Is defined as

Since, this is equal to 1.25 x 10~ K™,
dV -3 -4 3
— | =125x 10"V =125 x 10 " m /kmol K
JaT |,

Consider Maxwell’s relation which gives
ds A dP
= o,

The change in entropy is
AS =-1.25x10% (P2-P1)=-1.25%x10%(20.0 — 1.0) x 10° = - 237.5 J/kmol K
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Entnalpy and Entropy as functions of T ane P, =

O In expressing H and S as functions of T and P, the following
derivatives are very useful:

- &), Gr)p (G7), 2nd (55),
d Since dH = C.dT, it may be expressed as
d Also, we know that dH = TdS + VdP 2-2

O Dividing Egn.2-2 by dT and restricting the result to constant P,
: () =7(Z)
oT P oT P

O Combining this with Egn.3-1 gives

° @ - C_P )
(aT)p T 23
d And from one of the Maxwell eqgn. we have, [Z—i]T = - Z—ZL

O The corresponding derivatives for the enthalpy is obtained by
dividing Eqn.2-2 by dP and restriction to constant T

' G, =7G), +V 2-4
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Enthalpy and Entropy as functions of T ane Pua. =
O Substituting * in Egn.2-4 yields,

- @), -v-1(2),

« Also if the fundamental relations chosen for H and S is given by
« H=1f(T,POand S =1{(T,P),
It follows that

. dH = (g—’;’)P dT + (Z—Z)T dP
. ds = (Z—j)P dT + (g—lf)T dpP

« Substituting for the partial derivatives in these equations from
previous derivations, we get

: dH = C,dT + [v T(Z ]dP 2.6
. _Cp pmn (OV
and ds = <Edr ( aT)P dP

« But (Z—Z) has the same meaning as volume expansivity for a
P

compressible fluid, hence( ) =BV
* Hence ds = C;{’dT -BVdP 2-7
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Enthalpy and Entropy as functions of T ane Puww. =

d and dH = CPdT + |1 -BT]VdP
0 Similarly, (STS;)T = - BV
OH\
. and (E)T = (1- BTV 2-8

« These are general relations relating the enthalpy and entropy of
homogenous fluids of constant composition to temperature and
pressure.

 The pressure dependence of the internal energy can be obtained
by differentiation of the equation U = H — PV

), ),
+ For == (57)
. (Z—Z)T = (kP - BTV 2-9

 Where « is the isothermal compressibility.

« Eqns.2-6 to 2-9 which require values of 3 and «, are usually
applied only to liquids.
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Internal Energy ancd Entropy as functions of T ane V

O T and V are more convenient independent variables than do T and P.
1 The most useful property relations for U and S are the derivatives of
aU as aU N
- Gr), Gy Gr), 2nd (55),
O Since dU =TdS — PdV
O Dividing through by dT and restricting to constant volume yields
oU as
- Gr), =7,
O and dividing through by dV and restricting to constant T yields
0U\ _ o (3S) _
0 &), =7, -7
O From first law expression for closed system at constant volume
0 ¢ =(32)
V= oT vV
95\ _ v _
O Hence, (aT)V = - 2-10
O Also from one of Maxwell equation [a—P] = &
0T 1y ovlr
oU P
Q Thus, (W)T =T (5)‘/ —p 2-11
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Internal Energy and Entropy as functions of T and ot

« Also if the fundamental relations chosen for U and S is given by
« H=A1(T,V)and S =1(T,V),
|t follows that

. dU = (;_Z)V dT + (aZ_Z)T dv
S S
. ds = (a—T)V dT + (W)T dv

« Substituting for the partial derivatives in these equations from
previous derivations, we get

. dU=CdT+[T a—P) —P]dV 2-12
vV
. and ds = CV dT + (a‘; ) dv 2.13

« But (Z—I;) has the same meaning as volume expansivity for a
%

compressible fluid, hence (Z—i)v — é
* Hence ds = %dT + édv 2-14
. And du = cvdr +[TE — p|av 215
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From PVT diagram, a phase transition at constant T and P occurs
whenever the phase boundaries is crossed, hence the values of the
extensive properties (V, U, H, S) changes abruptly.
The values of these properties for a saturated liquid is very different
from that for saturated vapour at the same T and P, except G.
G for a pure specie remains the same during a phase transition.
Hence for system at equilibrium, dG = 0. this is a necessary
condition.
For two phases a and [3 of a pure specie co-existing at equilibrium,
Go=Gh 2-16

Where G® and GP are molar Gibbs energies of the individual phases.
If the temperature of a 2-phase system is changed, the pressure
must also change in accordance with the relation between vapour
pressure and temperature for the system to remain in equilibrium,
Hence dGo = dGP 2-17
But dG = VdP — SdT
Substituting the expression for dG® = dGP we have

Vodpsat — SodT = VedpPsat — SBdT 2-18
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Upon rearrangement, Eqn.2-18 becomes,

Substituting the expression for dG® = dGP we have
dps*t  sP_s*  psaP
ar ~ vB-vya T ayeB 2-19
AS% and AV are the changes which occur when a unit amount of a

pure chemical specie is transferred from phase a to phase (3 at the
equilibrium T and P.

Also since dH =TdS + VdP
Integrating this equation for a phase transition yields the latent heat
B
AHoB = TASES and  ASYF = = 2-20
Substituting in eqn.2-19 yields,
dpsat  AHOP
= 2-21

dr TAV 2B
Egn.2-21 is called the Clapeyron equation. It provides vital

connection between properties of different phases.
For phase transition from liquid (I) to vapour (v), the Clapeyron

equation is written as
dpsat AHlv

ar _ TAvW 2-22
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Therrhocdynaric Properties of Two-Phase Systerns e

O If the vapour phase is assumed to be an ideal gas, and the molar
volume of the liquid is negligible compared with that of the vapour,
the Clapeyron equation is modified as thus,

a AVVaP = \Jg AYYAP = |9 = L
psat
U Egn.2-22 then becomes,
dPSCLt AHvap
- AT RTZ/psat 2-222a
dpsat/Psat AHUClp
EI T E = 2-22b
a AHYaP = _pg AP 2-22
- d(1/T) ¢

U Egn.2-22c is called the Clausius-Clapeyron equation. It relates
the latent heat of vapourization directly to the vapour pressure vs T
curve.

a dinpsat = A7 (3) 2-224
R

T
O Aplot of InPsat vs 1/T gives the value of the slope as AH@/R.

U Integration of Eqn.2-22d yields,
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o(2), =2k
Pl sat a R Tl T;'- sat

O where hfg = AHvaP
U Other correlations of Eqn.2-22d are

B
A [InpPsat = 4 — p 2-23a
v' A and B are constants for specific species (though less accurate)
: B
d There is also InPS4t = A — P 2-23b

v A,B and C are constants
O This is the Antoine equation provides a more satisfactory form, and it
IS more widely used.
U For high accuracy, we have

0 InPsat = 4 — 24 DT 4+ EInT, 2-23¢
T+C

v A,B,C,D and E are constants (difficult to evaluate)
v' These Eqns are used to estimate the saturation vapour pressure of a
substance.
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